On the Cauchy - Riemann Geometry of Transversal Curves in the 3-Sphere

Let $\mathrm S^3$ be the unit sphere of $\mathbb C^2$ with its standard Cauchy--Riemann (CR) structure. This paper investigates the CR geometry of curves in $\mathrm S^3$ which are transversal to the contact distribution, using the local CR invariants of $\mathrm S^3$. More specifically, the focus i...

Full description

Saved in:
Bibliographic Details
Date:2020
Main Authors: Musso, Emilio, Nicolodi, Lorenzo, Salis, Filippo
Format: Article
Language:English
Published: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України 2020
Subjects:
Online Access:https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/jm16-0312e
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Journal of Mathematical Physics, Analysis, Geometry

Institution

Journal of Mathematical Physics, Analysis, Geometry
Description
Summary:Let $\mathrm S^3$ be the unit sphere of $\mathbb C^2$ with its standard Cauchy--Riemann (CR) structure. This paper investigates the CR geometry of curves in $\mathrm S^3$ which are transversal to the contact distribution, using the local CR invariants of $\mathrm S^3$. More specifically, the focus is on the CR geometry of transversal knots. Four global invariants of transversal knots are considered: the phase anomaly, the CR spin, the Maslov index, and the CR self-linking number. The interplay between these invariants and the Bennequin number of a knot are discussed. Next, the simplest CR invariant variational problem for generic transversal curves is considered and its closed critical curves are studied.Mathematics Subject Classification: 53C50, 53C42, 53A10