On Conformal Metrics of Constant Positive Curvature in the Plane

We prove three theorems about solutions of $\Delta u+e^{2u}=0$ in the plane. The first two describe explicitly all concave and quasiconcave solutions. The third theorem says that the diameter of the plane with respect to the metric with line element $e^{u}|dz|$ is at least $4\pi/3$, except for two e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2023
Hauptverfasser: Bergweiler, Walter, Eremenko, Alexandre, Langley, James
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України 2023
Schlagworte:
Online Zugang:https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/996
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Journal of Mathematical Physics, Analysis, Geometry

Institution

Journal of Mathematical Physics, Analysis, Geometry
Beschreibung
Zusammenfassung:We prove three theorems about solutions of $\Delta u+e^{2u}=0$ in the plane. The first two describe explicitly all concave and quasiconcave solutions. The third theorem says that the diameter of the plane with respect to the metric with line element $e^{u}|dz|$ is at least $4\pi/3$, except for two explicitly described families of solutions $u$. Mathematical Subject Classification 2020: 35B99, 35G20, 30D15