On Perturbative Hardy-Type Inequalities

Given a three-coefficient Sturm–Liouville differential expression $\tau_0 = r_0^{-1}[-(d/dx)p_0(d/dx)+q_0]$ and its perturbation $\tau_{q_1}=\tau_0+r_0q^{-1}$ on an interval $(a,b)\subset\mathbb{R}$, we employ the existence of a strictly positive solution $u_0(\lambda_0,\cdot)>0$ on $(a,b)$ o...

Full description

Saved in:
Bibliographic Details
Date:2023
Main Authors: Gesztesy, Fritz, Nichols, Roger, Pang, Michael M. H.
Format: Article
Language:English
Published: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України 2023
Subjects:
Online Access:https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/999
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Journal of Mathematical Physics, Analysis, Geometry

Institution

Journal of Mathematical Physics, Analysis, Geometry
Description
Summary:Given a three-coefficient Sturm–Liouville differential expression $\tau_0 = r_0^{-1}[-(d/dx)p_0(d/dx)+q_0]$ and its perturbation $\tau_{q_1}=\tau_0+r_0q^{-1}$ on an interval $(a,b)\subset\mathbb{R}$, we employ the existence of a strictly positive solution $u_0(\lambda_0,\cdot)>0$ on $(a,b)$ of $\tau_0u_0=\lambda_0u_0$ to derive a quadratic form inequality for $\tau_{q_1}$ that naturally generalizes the well-known Hardy inequality and reduces to it in the particular case $p_0=r_0=u_0(0,\cdot)=1$, $q_0=\lambda_0=0$, $a\in \mathbb{R}, b=\infty.$ Mathematical Subject Classification 2020: 34A40, 34B24, 34C10, 47E05,26D20, 34L05