Розробка фізично коректної моделі відбиття другого степеня
In this article the development of physically correct light reflectance model which is based on the modified Schlick model is discussed. The advantages and disadvantages of main empirical reflectance models are discussed. The necessity of development of the new physically correct bidirectional refle...
Gespeichert in:
| Datum: | 2023 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Artikel |
| Sprache: | Ukrainian |
| Veröffentlicht: |
Vinnytsia National Technical University
2023
|
| Schlagworte: | |
| Online Zugang: | https://oeipt.vntu.edu.ua/index.php/oeipt/article/view/624 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Optoelectronic Information-Power Technologies |
Institution
Optoelectronic Information-Power Technologies| Zusammenfassung: | In this article the development of physically correct light reflectance model which is based on the modified Schlick model is discussed. The advantages and disadvantages of main empirical reflectance models are discussed. The necessity of development of the new physically correct bidirectional reflectance distribution functions is shown. The main steps of normalizing coefficient calculation for the modified Schlick model are discussed. The ideal normalizing coefficient values depending on the surface specularity coefficient were calculated. The formula of dependence between coefficient value and was discovered. The absolute error value between and hemispherical integral reflectivity value was calculated for the interval n ∈ [2,1000]. |
|---|