Аналіз методів підтримки прийняття рішень в системах поляризаційної інтроскопії біологічних тканин та рідин

The article discusses the features of the application of decision support methods based on machine learning, fuzzy logic and neural networks in polarization introscopy systems of biological objects. It was determined that methods such as fuzzy logic, some machine learning methods (decision trees, XG...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2025
1. Verfasser: Шолота, В.В.
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Vinnytsia National Technical University 2025
Schlagworte:
Online Zugang:https://oeipt.vntu.edu.ua/index.php/oeipt/article/view/760
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Optoelectronic Information-Power Technologies

Institution

Optoelectronic Information-Power Technologies
Beschreibung
Zusammenfassung:The article discusses the features of the application of decision support methods based on machine learning, fuzzy logic and neural networks in polarization introscopy systems of biological objects. It was determined that methods such as fuzzy logic, some machine learning methods (decision trees, XGBoost) and neural networks (multilayer perceptron) allow to achieve an increase in the accuracy of polarization diagnostics of BS to the level of 81-98%. However, the obtained accuracy results may be overestimated due to the imperfection of the evaluation models and methods of sample formation, which requires further research. A comparative analysis of their accuracy characteristics is presented, taking into account the input data, software implementation and the type of pathologies diagnosed in the introscopy system.