Дослідження методу прогнозування глибини інвазії меланоми
Melanoma, a highly malignant skin tumor, relies on its Depth of Invasion (DoI) as a critical metric for assessing tumor malignancy, predicting patient prognosis, and guiding treatment strategies. Traditional DoI measurement methods are manual, time-consuming, and prone to errors due to complex tissu...
Збережено в:
| Дата: | 2025 |
|---|---|
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Vinnytsia National Technical University
2025
|
| Теми: | |
| Онлайн доступ: | https://oeipt.vntu.edu.ua/index.php/oeipt/article/view/778 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Optoelectronic Information-Power Technologies |
Репозитарії
Optoelectronic Information-Power Technologies| Резюме: | Melanoma, a highly malignant skin tumor, relies on its Depth of Invasion (DoI) as a critical metric for assessing tumor malignancy, predicting patient prognosis, and guiding treatment strategies. Traditional DoI measurement methods are manual, time-consuming, and prone to errors due to complex tissue morphologies and the need for fine annotations. This study introduces a novel Convolutional Neural Network (CNN)-based framework that integrates image patch classification with morphological processing to achieve high-precision DoI prediction under coarse annotations.
The approach comprises four modules: pathology tissue differentiation using Otsu thresholding and morphological operations, lesion and epidermal region identification via EfficientNetB0 classification, and DoI measurement through least-squares boundary fitting. Experimental results on a melanoma dataset demonstrate a Mean Absolute Error (MAE) of 0.503 mm and a Root Mean Square Error (RMSE) of 0.169 mm, significantly outperforming traditional segmentation networks such as UNet and Attention-UNet. This method provides a robust and efficient solution for automated melanoma diagnosis, with substantial potential for clinical translation. |
|---|