Методи денормалізації для сховищ даних IOT: балансування продуктивності запитів і надлишковості даних
This article explores the impact of denormalization techniques on query performance in IoT data warehouses while maintaining acceptable data redundancy. It analyzes normalized and denormalized approaches in a smart home IoT environment using Azure Synapse. Empirical testing (10,000–5 milli...
Saved in:
| Date: | 2025 |
|---|---|
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
Vinnytsia National Technical University
2025
|
| Subjects: | |
| Online Access: | https://oeipt.vntu.edu.ua/index.php/oeipt/article/view/785 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Optoelectronic Information-Power Technologies |
Institution
Optoelectronic Information-Power Technologies| Summary: | This article explores the impact of denormalization techniques on query performance in IoT data warehouses while maintaining acceptable data redundancy. It analyzes normalized and denormalized approaches in a smart home IoT environment using Azure Synapse. Empirical testing (10,000–5 million records) shows that strategic denormalization combined with columnar storage optimization improves performance by up to 94%. Evaluating four key optimization techniques (Join Reduction, Columnar Storage, Query Complexity Optimization, Temporal Scaling Optimization), we find that denormalization initially increases storage needs by 16% (120 GB vs. 103.5 GB), but columnar compression reduces the final storage size by 50.4% (17.1 GB vs. 34.5 GB). The study provides practical insights into balancing query performance and data redundancy in high-speed IoT environments. |
|---|