Методи денормалізації для сховищ даних IOT: балансування продуктивності запитів і надлишковості даних

 This article explores the impact of denormalization techniques on query performance in IoT data warehouses while maintaining acceptable data redundancy. It analyzes normalized and denormalized approaches in a smart home IoT environment using Azure Synapse. Empirical testing (10,000–5 milli...

Full description

Saved in:
Bibliographic Details
Date:2025
Main Authors: Талах, М.В., Дворжак, В.В., Ушенко, Ю.О.
Format: Article
Language:English
Published: Vinnytsia National Technical University 2025
Subjects:
Online Access:https://oeipt.vntu.edu.ua/index.php/oeipt/article/view/785
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Optoelectronic Information-Power Technologies

Institution

Optoelectronic Information-Power Technologies
Description
Summary: This article explores the impact of denormalization techniques on query performance in IoT data warehouses while maintaining acceptable data redundancy. It analyzes normalized and denormalized approaches in a smart home IoT environment using Azure Synapse. Empirical testing (10,000–5 million records) shows that strategic denormalization combined with columnar storage optimization improves performance by up to 94%. Evaluating four key optimization techniques (Join Reduction, Columnar Storage, Query Complexity Optimization, Temporal Scaling Optimization), we find that denormalization initially increases storage needs by 16% (120 GB vs. 103.5 GB), but columnar compression reduces the final storage size by 50.4% (17.1 GB vs. 34.5 GB). The study provides practical insights into balancing query performance and data redundancy in high-speed IoT environments.