Застосування машинного навчання в контексті підготовки фахівців в сфері трансферу технологій та безпеки фінансових транзакціях
The article is devoted to the topical problem of detecting fraudulent anomalies in financial transactions using machine learning methods. In the context of rapid digital transformation of financial systems and growth in transaction volumes, traditional methods of fraud detection are becoming ineffec...
Gespeichert in:
| Datum: | 2026 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Artikel |
| Sprache: | Ukrainisch |
| Veröffentlicht: |
Vinnytsia National Technical University
2026
|
| Schlagworte: | |
| Online Zugang: | https://oeipt.vntu.edu.ua/index.php/oeipt/article/view/793 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Optoelectronic Information-Power Technologies |
Institution
Optoelectronic Information-Power Technologies| _version_ | 1856543904786022400 |
|---|---|
| author | Угрин, Д. І. Ушенко, Ю.О. Томка, Ю.Я. Павлов, С.В. Талах, М.В. Д’яченко, Л.І. Газдюк, К.П. |
| author_facet | Угрин, Д. І. Ушенко, Ю.О. Томка, Ю.Я. Павлов, С.В. Талах, М.В. Д’яченко, Л.І. Газдюк, К.П. |
| author_sort | Угрин, Д. І. |
| baseUrl_str | |
| collection | OJS |
| datestamp_date | 2026-01-12T10:58:28Z |
| description | The article is devoted to the topical problem of detecting fraudulent anomalies in financial transactions using machine learning methods. In the context of rapid digital transformation of financial systems and growth in transaction volumes, traditional methods of fraud detection are becoming ineffective, which highlights the urgent need to implement automated and adaptive solutions. The research is based on a step-by-step approach that includes data preparation and processing, building and training classification models, and evaluating their effectiveness. A comparative analysis of seven popular machine learning algorithms was conducted: linear regression, decision trees, random forest, neural networks, gradient boosting, XGBoost, and SVC. The key findings of the study showed that ensemble methods demonstrate the highest effectiveness in detecting fraud: Random Forest, Gradient Boosting, and XGBoost proved to be the most suitable for fraud detection tasks, demonstrating consistently high results. This is especially important given the typical class imbalance (a small number of fraudulent transactions compared to legitimate ones) in real financial data. The effectiveness of the models significantly outperforms the other algorithms considered, indicating their ability to detect complex, non-obvious patterns in the data. The critical importance of correctly configuring model hyperparameters and accounting for class imbalance to achieve maximum accuracy and completeness in detecting fraudulent transactions has been confirmed. This avoids overfitting on the dominant class and increases the system's sensitivity to rare but important fraudulent cases. The practical significance of the study lies in the fact that the proposed approach allows financial institutions to significantly improve operational efficiency, minimize financial losses, and strengthen customer trust. The implementation of such systems provides comprehensive and adaptive protection of the financial system in today's dynamic digital environment. The results of the study confirm the effectiveness of machine learning as a powerful tool for combating financial fraud. |
| first_indexed | 2026-02-08T08:10:39Z |
| format | Article |
| id | oai:oeipt.vntu.edu.ua:article-793 |
| institution | Optoelectronic Information-Power Technologies |
| language | Ukrainian |
| last_indexed | 2026-02-08T08:10:39Z |
| publishDate | 2026 |
| publisher | Vinnytsia National Technical University |
| record_format | ojs |
| spelling | oai:oeipt.vntu.edu.ua:article-7932026-01-12T10:58:28Z Agile risk management methodology for decision-making in startup projects based on stock price forecasting Застосування машинного навчання в контексті підготовки фахівців в сфері трансферу технологій та безпеки фінансових транзакціях Угрин, Д. І. Ушенко, Ю.О. Томка, Ю.Я. Павлов, С.В. Талах, М.В. Д’яченко, Л.І. Газдюк, К.П. machine learning financial fraud anomaly prediction ensemble methods Random Forest Gradient Boosting XGBoost transfer of technology class imbalance financial transactions машинне навчання фінансове шахрайство прогнозування аномалій ансамблеві методи Random Forest Gradient Boosting XGBoost трансфер технологій дисбаланс класів фінансові транзакції The article is devoted to the topical problem of detecting fraudulent anomalies in financial transactions using machine learning methods. In the context of rapid digital transformation of financial systems and growth in transaction volumes, traditional methods of fraud detection are becoming ineffective, which highlights the urgent need to implement automated and adaptive solutions. The research is based on a step-by-step approach that includes data preparation and processing, building and training classification models, and evaluating their effectiveness. A comparative analysis of seven popular machine learning algorithms was conducted: linear regression, decision trees, random forest, neural networks, gradient boosting, XGBoost, and SVC. The key findings of the study showed that ensemble methods demonstrate the highest effectiveness in detecting fraud: Random Forest, Gradient Boosting, and XGBoost proved to be the most suitable for fraud detection tasks, demonstrating consistently high results. This is especially important given the typical class imbalance (a small number of fraudulent transactions compared to legitimate ones) in real financial data. The effectiveness of the models significantly outperforms the other algorithms considered, indicating their ability to detect complex, non-obvious patterns in the data. The critical importance of correctly configuring model hyperparameters and accounting for class imbalance to achieve maximum accuracy and completeness in detecting fraudulent transactions has been confirmed. This avoids overfitting on the dominant class and increases the system's sensitivity to rare but important fraudulent cases. The practical significance of the study lies in the fact that the proposed approach allows financial institutions to significantly improve operational efficiency, minimize financial losses, and strengthen customer trust. The implementation of such systems provides comprehensive and adaptive protection of the financial system in today's dynamic digital environment. The results of the study confirm the effectiveness of machine learning as a powerful tool for combating financial fraud. Стаття присвячена актуальній проблемі виявлення шахрайських аномалій у фінансових транзакціях за допомогою методів машинного навчання. В умовах стрімкої цифрової трансформації фінансових систем та зростання обсягів транзакцій традиційні методи виявлення шахрайства стають неефективними, що підкреслює нагальну потребу впровадження автоматизованих та адаптивних рішень. Дослідження базується на поетапному підході, що включає підготовку та обробку даних, побудову та навчання моделей класифікації, а також оцінку їх ефективності. Було проведено порівняльний аналіз семи популярних алгоритмів машинного навчання: лінійної регресії, дерев рішень, випадкового лісу (Random Forest), нейронних мереж, градієнтного бустингу (Gradient Boosting), XGBoost та SVC. Ключові результати дослідження показали, що ансамблеві методи демонструють найвищу ефективність у виявленні шахрайства: Random Forest, Gradient Boosting та XGBoost виявилися найбільш доцільними для задач виявлення шахрайства, демонструючи стабільно високі результати. Це особливо важливо з огляду на типовий дисбаланс класів (невелика кількість шахрайських транзакцій порівняно з легітимними) у реальних фінансових даних. Ефективність моделей значно перевершує інші розглянуті алгоритми, що вказує на їхню здатність виявляти складні, неочевидні закономірності в даних. Було підтверджено критичну важливість правильного налаштування гіперпараметрів моделей та урахування дисбалансу класів для досягнення максимальної точності та повноти виявлення шахрайських транзакцій. Це дозволяє уникнути перенавчання на домінуючому класі та підвищити чутливість системи до рідкісних, але важливих шахрайських випадків. Практична значущість дослідження полягає в тому, що запропонований підхід дозволяє фінансовим установам значно підвищити операційну ефективність, мінімізувати фінансові втрати та зміцнити довіру клієнтів. Впровадження таких систем забезпечує комплексний та адаптивний захист фінансової системи у сучасному динамічному цифровому середовищі. Результати дослідження підтверджують ефективність машинного навчання як потужного інструменту для боротьби з фінансовим шахрайством. Vinnytsia National Technical University 2026-01-12 Article Article application/pdf https://oeipt.vntu.edu.ua/index.php/oeipt/article/view/793 10.31649/1681-7893-2025-50-2-13-29 Optoelectronic Information-Power Technologies; Vol. 50 No. 2 (2025); 13-29 Оптико-електроннi iнформацiйно-енергетичнi технологiї; Том 50 № 2 (2025); 13-29 Оптико-електроннi iнформацiйно-енергетичнi технологiї; Том 50 № 2 (2025); 13-29 2311-2662 1681-7893 10.31649/1681-7893-2025-50-2 uk https://oeipt.vntu.edu.ua/index.php/oeipt/article/view/793/722 |
| spellingShingle | машинне навчання фінансове шахрайство прогнозування аномалій ансамблеві методи Random Forest Gradient Boosting XGBoost трансфер технологій дисбаланс класів фінансові транзакції Угрин, Д. І. Ушенко, Ю.О. Томка, Ю.Я. Павлов, С.В. Талах, М.В. Д’яченко, Л.І. Газдюк, К.П. Застосування машинного навчання в контексті підготовки фахівців в сфері трансферу технологій та безпеки фінансових транзакціях |
| title | Застосування машинного навчання в контексті підготовки фахівців в сфері трансферу технологій та безпеки фінансових транзакціях |
| title_alt | Agile risk management methodology for decision-making in startup projects based on stock price forecasting |
| title_full | Застосування машинного навчання в контексті підготовки фахівців в сфері трансферу технологій та безпеки фінансових транзакціях |
| title_fullStr | Застосування машинного навчання в контексті підготовки фахівців в сфері трансферу технологій та безпеки фінансових транзакціях |
| title_full_unstemmed | Застосування машинного навчання в контексті підготовки фахівців в сфері трансферу технологій та безпеки фінансових транзакціях |
| title_short | Застосування машинного навчання в контексті підготовки фахівців в сфері трансферу технологій та безпеки фінансових транзакціях |
| title_sort | застосування машинного навчання в контексті підготовки фахівців в сфері трансферу технологій та безпеки фінансових транзакціях |
| topic | машинне навчання фінансове шахрайство прогнозування аномалій ансамблеві методи Random Forest Gradient Boosting XGBoost трансфер технологій дисбаланс класів фінансові транзакції |
| topic_facet | machine learning financial fraud anomaly prediction ensemble methods Random Forest Gradient Boosting XGBoost transfer of technology class imbalance financial transactions машинне навчання фінансове шахрайство прогнозування аномалій ансамблеві методи Random Forest Gradient Boosting XGBoost трансфер технологій дисбаланс класів фінансові транзакції |
| url | https://oeipt.vntu.edu.ua/index.php/oeipt/article/view/793 |
| work_keys_str_mv | AT ugrindí agileriskmanagementmethodologyfordecisionmakinginstartupprojectsbasedonstockpriceforecasting AT ušenkoûo agileriskmanagementmethodologyfordecisionmakinginstartupprojectsbasedonstockpriceforecasting AT tomkaûâ agileriskmanagementmethodologyfordecisionmakinginstartupprojectsbasedonstockpriceforecasting AT pavlovsv agileriskmanagementmethodologyfordecisionmakinginstartupprojectsbasedonstockpriceforecasting AT talahmv agileriskmanagementmethodologyfordecisionmakinginstartupprojectsbasedonstockpriceforecasting AT dâčenkolí agileriskmanagementmethodologyfordecisionmakinginstartupprojectsbasedonstockpriceforecasting AT gazdûkkp agileriskmanagementmethodologyfordecisionmakinginstartupprojectsbasedonstockpriceforecasting AT ugrindí zastosuvannâmašinnogonavčannâvkontekstípídgotovkifahívcívvsferítransferutehnologíjtabezpekifínansovihtranzakcíâh AT ušenkoûo zastosuvannâmašinnogonavčannâvkontekstípídgotovkifahívcívvsferítransferutehnologíjtabezpekifínansovihtranzakcíâh AT tomkaûâ zastosuvannâmašinnogonavčannâvkontekstípídgotovkifahívcívvsferítransferutehnologíjtabezpekifínansovihtranzakcíâh AT pavlovsv zastosuvannâmašinnogonavčannâvkontekstípídgotovkifahívcívvsferítransferutehnologíjtabezpekifínansovihtranzakcíâh AT talahmv zastosuvannâmašinnogonavčannâvkontekstípídgotovkifahívcívvsferítransferutehnologíjtabezpekifínansovihtranzakcíâh AT dâčenkolí zastosuvannâmašinnogonavčannâvkontekstípídgotovkifahívcívvsferítransferutehnologíjtabezpekifínansovihtranzakcíâh AT gazdûkkp zastosuvannâmašinnogonavčannâvkontekstípídgotovkifahívcívvsferítransferutehnologíjtabezpekifínansovihtranzakcíâh |