Багаторівнева архітектура системи автоматичного керування БПЛА для здійснення пошукових місій за відеоаналізом та металодетекцією

The article presents a multi-level automatic mission control system for an unmanned aerial vehicle designed to detect hazardous items in tasks involving the identification of suspicious objects. The proposed architecture combines edge–ground–cloud data processing from the onboard video camera and me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2026
Hauptverfasser: Роботько, С.П., Топалов, А.М.
Format: Artikel
Sprache:Ukrainisch
Veröffentlicht: Vinnytsia National Technical University 2026
Schlagworte:
Online Zugang:https://oeipt.vntu.edu.ua/index.php/oeipt/article/view/804
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Optoelectronic Information-Power Technologies

Institution

Optoelectronic Information-Power Technologies
Beschreibung
Zusammenfassung:The article presents a multi-level automatic mission control system for an unmanned aerial vehicle designed to detect hazardous items in tasks involving the identification of suspicious objects. The proposed architecture combines edge–ground–cloud data processing from the onboard video camera and metal detector, as well as the use of vision–language models (ChatGPT-4.1 Vision, Gemini 2.5 Flash) for semantic verification of suspected objects. At the ground station, initial detection of hazardous items is performed using YOLOv8 and metal-detector signal analysis. Frames with intermediate confidence are then sent to the cloud for additional verification by VLMs. Based on the combined assessment, a decision is generated regarding the presence of a hazardous item, which automatically adjusts the UAV mission via MAVLink: the drone is switched from AUTO to GUIDED mode, returns to the GPS coordinates of the suspicion, performs additional inspection, and then resumes the mission from the saved waypoint. Experimental field tests with mock-ups of hazardous items demonstrated that combining YOLOv8, the metal detector, and VLMs makes it possible to achieve increasing precision to approximately 95.7% and maintaining near-real-time performance (effective 5 fps). The scientific novelty of the work lies in implementing a closed loop of “detection – semantic verification – automatic mission correction” for UAVs, which integrates multimodal data fusion with cloud-based AI models and reduces operator workload.