Correct classes of modules

For a  ring \(R\), call a class \(\cal C\) of \(R\)-modules  (pure-) mono-correct if for any \(M,N \in \cal C\) the existence of (pure) monomorphisms \(M\to N\) and \(N\to M\) implies \(M\simeq N\). Extending results and ideas of Rososhek from rings to modules, it is shown that, for an \(R\)-module...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Wisbauer, Robert
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1014
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:For a  ring \(R\), call a class \(\cal C\) of \(R\)-modules  (pure-) mono-correct if for any \(M,N \in \cal C\) the existence of (pure) monomorphisms \(M\to N\) and \(N\to M\) implies \(M\simeq N\). Extending results and ideas of Rososhek from rings to modules, it is shown that, for an \(R\)-module \(M\), the class \(\sigma [M]\) of all \(M\)-subgenerated modules is mono-correct if and only if \(M\) is semisimple, and the class of all weakly \(M\)-injective modules is mono-correct if and only if \(M\) is locally noetherian. Applying this to the functor ring of \(R\)-Mod provides a new proof that \(R\) is left pure semisimple if and only if \(R\mbox{-Mod}\) is pure-mono-correct. Furthermore, the class of pure-injective \(R\)-modules is always pure-mono-correct, and it is mono-correct if and only if \(R\) is von Neumann regular. The dual notion epi-correctness is also considered and it is shown that a ring \(R\) is left perfect if and only if the class of all flat  \(R\)-modules is epi-correct. At the end some open problems are stated.