Correct classes of modules

For a  ring \(R\), call a class \(\cal C\) of \(R\)-modules  (pure-) mono-correct if for any \(M,N \in \cal C\) the existence of (pure) monomorphisms \(M\to N\) and \(N\to M\) implies \(M\simeq N\). Extending results and ideas of Rososhek from rings to modules, it is shown that, for an \(R\)-module...

Full description

Saved in:
Bibliographic Details
Date:2018
Main Author: Wisbauer, Robert
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2018
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1014
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics