Chromatic number of graphs with special distance sets, I

Given a subset \(D\) of positive integers, an integer distance graph is a graph \(G(\mathbb{Z}, D)\) with the set \(\mathbb{Z}\) of integers as vertex set and with an edge joining two vertices \(u\) and \(v\) if and only if \(|u - v| \in D\). In this paper we consider the problem of determining the...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Yegnanarayanan, V.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1028
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1028
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-10282018-04-26T01:41:11Z Chromatic number of graphs with special distance sets, I Yegnanarayanan, V. chromatic number, prime distance graph, unit distance graph 05C15 Given a subset \(D\) of positive integers, an integer distance graph is a graph \(G(\mathbb{Z}, D)\) with the set \(\mathbb{Z}\) of integers as vertex set and with an edge joining two vertices \(u\) and \(v\) if and only if \(|u - v| \in D\). In this paper we consider the problem of determining the chromatic number of certain integer distance graphs \(G(\mathbb{Z}, D)\)whose distance set \(D\) is either 1) a set of \((n+1)\) positive integers for which the \(n^{th}\) power of the last is the sum of the \(n^{th}\) powers of the previous terms, or 2) a set of pythagorean quadruples, or 3) a set of pythagorean \(n\)-tuples, or 4) a set of square distances, or 5) a set of abundant numbers or deficient numbers or carmichael numbers, or 6) a set of polytopic numbers, or 7) a set of happy numbers or lucky numbers, or 8) a set of Lucas numbers, or 9) a set of \(\mathcal{U}\)lam numbers, or 10) a set of weird numbers. Besides finding the chromatic number of a few specific distance graphs we also give useful upper and lower bounds for general cases. Further, we raise some open problems. Lugansk National Taras Shevchenko University 2018-04-26 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1028 Algebra and Discrete Mathematics; Vol 17, No 1 (2014) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1028/552 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-04-26T01:41:11Z
collection OJS
language English
topic chromatic number
prime distance graph
unit distance graph
05C15
spellingShingle chromatic number
prime distance graph
unit distance graph
05C15
Yegnanarayanan, V.
Chromatic number of graphs with special distance sets, I
topic_facet chromatic number
prime distance graph
unit distance graph
05C15
format Article
author Yegnanarayanan, V.
author_facet Yegnanarayanan, V.
author_sort Yegnanarayanan, V.
title Chromatic number of graphs with special distance sets, I
title_short Chromatic number of graphs with special distance sets, I
title_full Chromatic number of graphs with special distance sets, I
title_fullStr Chromatic number of graphs with special distance sets, I
title_full_unstemmed Chromatic number of graphs with special distance sets, I
title_sort chromatic number of graphs with special distance sets, i
description Given a subset \(D\) of positive integers, an integer distance graph is a graph \(G(\mathbb{Z}, D)\) with the set \(\mathbb{Z}\) of integers as vertex set and with an edge joining two vertices \(u\) and \(v\) if and only if \(|u - v| \in D\). In this paper we consider the problem of determining the chromatic number of certain integer distance graphs \(G(\mathbb{Z}, D)\)whose distance set \(D\) is either 1) a set of \((n+1)\) positive integers for which the \(n^{th}\) power of the last is the sum of the \(n^{th}\) powers of the previous terms, or 2) a set of pythagorean quadruples, or 3) a set of pythagorean \(n\)-tuples, or 4) a set of square distances, or 5) a set of abundant numbers or deficient numbers or carmichael numbers, or 6) a set of polytopic numbers, or 7) a set of happy numbers or lucky numbers, or 8) a set of Lucas numbers, or 9) a set of \(\mathcal{U}\)lam numbers, or 10) a set of weird numbers. Besides finding the chromatic number of a few specific distance graphs we also give useful upper and lower bounds for general cases. Further, we raise some open problems.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1028
work_keys_str_mv AT yegnanarayananv chromaticnumberofgraphswithspecialdistancesetsi
first_indexed 2025-07-17T10:30:48Z
last_indexed 2025-07-17T10:30:48Z
_version_ 1837890129038934016