Densities, submeasures and partitions of groups

In 1995 in Kourovka notebook the second author asked the following problem:  is it true that for each partition \(G=A_1\cup\dots\cup A_n\) of a group \(G\) there is a cell \(A_i\) of the partition such that \(G=FA_iA_i^{-1}\) for some set \(F\subset G\) of cardinality \(|F|\le n\)?  In this paper we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Banakh, Taras, Protasov, Igor, Slobodianiuk, Sergiy
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1031
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Beschreibung
Zusammenfassung:In 1995 in Kourovka notebook the second author asked the following problem:  is it true that for each partition \(G=A_1\cup\dots\cup A_n\) of a group \(G\) there is a cell \(A_i\) of the partition such that \(G=FA_iA_i^{-1}\) for some set \(F\subset G\) of cardinality \(|F|\le n\)?  In this paper we survey several partial solutions of this problem, in particular those involving certain canonical invariant densities  and submeasures on groups. In particular, we show that for any partition \(G=A_1\cup\dots\cup A_n\)  of a group \(G\) there are cells \(A_i\), \(A_j\) of the partition such that \(G=FA_jA_j^{-1}\) for some finite set \(F\subset G\) of cardinality \(|F|\le \max_{0<k\le n}\sum_{p=0}^{n-k}k^p\le n!\);   \(G=F\cdot\bigcup_{x\in E}xA_iA_i^{-1}x^{-1}\) for some finite sets \(F,E\subset G\) with \(|F|\le n\);   \(G=FA_iA_i^{-1}A_i\) for some finite set \(F\subset G\) of cardinality \(|F|\le n\);   the set \((A_iA_i^{-1})^{4^{n-1}}\) is a subgroup of index \(\le n\) in \(G\). The last three statements are derived from the corresponding density results.