Densities, submeasures and partitions of groups
In 1995 in Kourovka notebook the second author asked the following problem: is it true that for each partition \(G=A_1\cup\dots\cup A_n\) of a group \(G\) there is a cell \(A_i\) of the partition such that \(G=FA_iA_i^{-1}\) for some set \(F\subset G\) of cardinality \(|F|\le n\)? In this paper we...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1031 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete MathematicsРезюме: | In 1995 in Kourovka notebook the second author asked the following problem: is it true that for each partition \(G=A_1\cup\dots\cup A_n\) of a group \(G\) there is a cell \(A_i\) of the partition such that \(G=FA_iA_i^{-1}\) for some set \(F\subset G\) of cardinality \(|F|\le n\)? In this paper we survey several partial solutions of this problem, in particular those involving certain canonical invariant densities and submeasures on groups. In particular, we show that for any partition \(G=A_1\cup\dots\cup A_n\) of a group \(G\) there are cells \(A_i\), \(A_j\) of the partition such that \(G=FA_jA_j^{-1}\) for some finite set \(F\subset G\) of cardinality \(|F|\le \max_{0<k\le n}\sum_{p=0}^{n-k}k^p\le n!\); \(G=F\cdot\bigcup_{x\in E}xA_iA_i^{-1}x^{-1}\) for some finite sets \(F,E\subset G\) with \(|F|\le n\); \(G=FA_iA_i^{-1}A_i\) for some finite set \(F\subset G\) of cardinality \(|F|\le n\); the set \((A_iA_i^{-1})^{4^{n-1}}\) is a subgroup of index \(\le n\) in \(G\). The last three statements are derived from the corresponding density results. |
---|