Densities, submeasures and partitions of groups
In 1995 in Kourovka notebook the second author asked the following problem: is it true that for each partition \(G=A_1\cup\dots\cup A_n\) of a group \(G\) there is a cell \(A_i\) of the partition such that \(G=FA_iA_i^{-1}\) for some set \(F\subset G\) of cardinality \(|F|\le n\)? In this paper we...
Gespeichert in:
Datum: | 2018 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
Schlagworte: | |
Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1031 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Algebra and Discrete Mathematics |