On the condensation property of the Lamplighter groups and groups of intermediate growth
The aim of this short note is to revisit some old results about groups of intermediate growth and groups of the lamplighter type and to show that the Lamplighter group \(L=\mathbb{Z}_2 \wr \mathbb{Z}\) is a condensation group and has a minimal presentation by generators and relators. The condensat...
Збережено в:
| Дата: | 2018 |
|---|---|
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1032 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| Резюме: | The aim of this short note is to revisit some old results about groups of intermediate growth and groups of the lamplighter type and to show that the Lamplighter group \(L=\mathbb{Z}_2 \wr \mathbb{Z}\) is a condensation group and has a minimal presentation by generators and relators. The condensation property is achieved by showing that \(L\) belongs to a Cantor subset of the space \(\mathcal{M}_2\) of marked \(2\)-generated groups consisting mostly of groups of intermediate growth. |
|---|