Dense subgroups in the group of interval exchange transformations

The paper concerns the  characterization of the group \(\mathop{IET}\) of interval exchange transformations (iet). We investigate a class of rational subgroups of \(\mathop{IET}\). These are subgroups consisting of iet transformations defined by partitions with rational endpoints. We propose a chara...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Bier, Agnieszka, Sushchanskyy, Vitaliy
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1033
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1033
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-10332018-04-26T02:11:00Z Dense subgroups in the group of interval exchange transformations Bier, Agnieszka Sushchanskyy, Vitaliy Interval exchange transformations, rational subgroups, dense subgroups, supernatural numbers 37B05, 28D05, 37A05 The paper concerns the  characterization of the group \(\mathop{IET}\) of interval exchange transformations (iet). We investigate a class of rational subgroups of \(\mathop{IET}\). These are subgroups consisting of iet transformations defined by partitions with rational endpoints. We propose a characterization of rational subgroups in terms of infinite supernatural numbers and prove that every such subgroup is dense in \(\mathop{IET}\). We also discuss the properties of these groups. Lugansk National Taras Shevchenko University 2018-04-26 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1033 Algebra and Discrete Mathematics; Vol 17, No 2 (2014) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1033/556 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-04-26T02:11:00Z
collection OJS
language English
topic Interval exchange transformations
rational subgroups
dense subgroups
supernatural numbers
37B05
28D05
37A05
spellingShingle Interval exchange transformations
rational subgroups
dense subgroups
supernatural numbers
37B05
28D05
37A05
Bier, Agnieszka
Sushchanskyy, Vitaliy
Dense subgroups in the group of interval exchange transformations
topic_facet Interval exchange transformations
rational subgroups
dense subgroups
supernatural numbers
37B05
28D05
37A05
format Article
author Bier, Agnieszka
Sushchanskyy, Vitaliy
author_facet Bier, Agnieszka
Sushchanskyy, Vitaliy
author_sort Bier, Agnieszka
title Dense subgroups in the group of interval exchange transformations
title_short Dense subgroups in the group of interval exchange transformations
title_full Dense subgroups in the group of interval exchange transformations
title_fullStr Dense subgroups in the group of interval exchange transformations
title_full_unstemmed Dense subgroups in the group of interval exchange transformations
title_sort dense subgroups in the group of interval exchange transformations
description The paper concerns the  characterization of the group \(\mathop{IET}\) of interval exchange transformations (iet). We investigate a class of rational subgroups of \(\mathop{IET}\). These are subgroups consisting of iet transformations defined by partitions with rational endpoints. We propose a characterization of rational subgroups in terms of infinite supernatural numbers and prove that every such subgroup is dense in \(\mathop{IET}\). We also discuss the properties of these groups.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1033
work_keys_str_mv AT bieragnieszka densesubgroupsinthegroupofintervalexchangetransformations
AT sushchanskyyvitaliy densesubgroupsinthegroupofintervalexchangetransformations
first_indexed 2025-07-17T10:36:00Z
last_indexed 2025-07-17T10:36:00Z
_version_ 1837890075211333632