The word problem in Hanoi Towers groups
We prove that the elements of the Hanoi Towers groups \(\mathcal{H}_m\) have depth bounded from above by a poly-logarithmic function \(O(\log^{m-2} n)\), where \(n\) is the length of an element. Therefore the word problem in groups \(\mathcal{H}_m\) is solvable in subexponential time \(exp(O(\log^{m...
Збережено в:
Дата: | 2018 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1034 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete MathematicsРезюме: | We prove that the elements of the Hanoi Towers groups \(\mathcal{H}_m\) have depth bounded from above by a poly-logarithmic function \(O(\log^{m-2} n)\), where \(n\) is the length of an element. Therefore the word problem in groups \(\mathcal{H}_m\) is solvable in subexponential time \(exp(O(\log^{m-2} n))\). |
---|