The word problem in Hanoi Towers groups

We prove that the elements of the Hanoi Towers groups \(\mathcal{H}_m\) have depth bounded from above by a poly-logarithmic function \(O(\log^{m-2} n)\), where \(n\) is the length of an element. Therefore the word problem in groups \(\mathcal{H}_m\) is solvable in subexponential time \(exp(O(\log^{m...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Bondarenko, Ievgen
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1034
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1034
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-10342018-04-26T02:11:00Z The word problem in Hanoi Towers groups Bondarenko, Ievgen the Tower of Hanoi game, automaton group, word problem, complexity 68R05, 20F10 We prove that the elements of the Hanoi Towers groups \(\mathcal{H}_m\) have depth bounded from above by a poly-logarithmic function \(O(\log^{m-2} n)\), where \(n\) is the length of an element. Therefore the word problem in groups \(\mathcal{H}_m\) is solvable in subexponential time \(exp(O(\log^{m-2} n))\). Lugansk National Taras Shevchenko University 2018-04-26 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1034 Algebra and Discrete Mathematics; Vol 17, No 2 (2014) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1034/557 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic the Tower of Hanoi game
automaton group
word problem
complexity
68R05
20F10
spellingShingle the Tower of Hanoi game
automaton group
word problem
complexity
68R05
20F10
Bondarenko, Ievgen
The word problem in Hanoi Towers groups
topic_facet the Tower of Hanoi game
automaton group
word problem
complexity
68R05
20F10
format Article
author Bondarenko, Ievgen
author_facet Bondarenko, Ievgen
author_sort Bondarenko, Ievgen
title The word problem in Hanoi Towers groups
title_short The word problem in Hanoi Towers groups
title_full The word problem in Hanoi Towers groups
title_fullStr The word problem in Hanoi Towers groups
title_full_unstemmed The word problem in Hanoi Towers groups
title_sort word problem in hanoi towers groups
description We prove that the elements of the Hanoi Towers groups \(\mathcal{H}_m\) have depth bounded from above by a poly-logarithmic function \(O(\log^{m-2} n)\), where \(n\) is the length of an element. Therefore the word problem in groups \(\mathcal{H}_m\) is solvable in subexponential time \(exp(O(\log^{m-2} n))\).
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1034
work_keys_str_mv AT bondarenkoievgen thewordprobleminhanoitowersgroups
AT bondarenkoievgen wordprobleminhanoitowersgroups
first_indexed 2024-04-12T06:26:42Z
last_indexed 2024-04-12T06:26:42Z
_version_ 1796109188362928128