Subpower Higson corona of a metric space

We define a subpower Higson corona of a metric space. This corona turns out to be an intermediate corona between the Higson corona and sublinear Higson corona. It is proved that the subpower compactification of an unbounded proper metric space contains a topological copy of the Stone-Cech compactifi...

Full description

Saved in:
Bibliographic Details
Date:2018
Main Authors: Kucab, Jacek, Zarichnyi, Mykhailo
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2018
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1036
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Description
Summary:We define a subpower Higson corona of a metric space. This corona turns out to be an intermediate corona between the Higson corona and sublinear Higson corona. It is proved that the subpower compactification of an unbounded proper metric space contains a topological copy of the Stone-Cech compactification of a countable discrete space. We also provide an example of a map between geodesic spaces that is not asymptotically Lipschitz but that generates a continuous map of the corresponding subpower Higson coronas.