On the units of integral group ring of \(C_{n}\times C_{6}\)

There are many kind of open problems with varying difficulty on units in a given integral group ring. In this note, we characterize the unit group of the integral group ring of \(C_{n}\times C_{6}\) where \(C_{n}=\langle a:a^{n}=1\rangle\) and \(C_{6}=\langle x:x^{6}=1\rangle\). We show that \(\math...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автор: Küsmüş, Ömer
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2015
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/104
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-104
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-1042015-11-10T19:25:54Z On the units of integral group ring of \(C_{n}\times C_{6}\) Küsmüş, Ömer group ring, integral group ring, unit group, unit problem 16U60, 16S34 There are many kind of open problems with varying difficulty on units in a given integral group ring. In this note, we characterize the unit group of the integral group ring of \(C_{n}\times C_{6}\) where \(C_{n}=\langle a:a^{n}=1\rangle\) and \(C_{6}=\langle x:x^{6}=1\rangle\). We show that \(\mathcal{U}_{1}(\mathbb{Z}[C_{n}\times C_{6}])\) can be expressed in terms of its 4 subgroups. Furthermore, forms of units in these subgroups are described by the unit group \(\mathcal{U}_{1}(\mathbb{Z}C_{n})\). Notations mostly follow \cite{sehgal2002}. Lugansk National Taras Shevchenko University 2015-11-09 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/104 Algebra and Discrete Mathematics; Vol 20, No 1 (2015): A special issue 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/104/34 Copyright (c) 2015 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic group ring
integral group ring
unit group
unit problem
16U60
16S34
spellingShingle group ring
integral group ring
unit group
unit problem
16U60
16S34
Küsmüş, Ömer
On the units of integral group ring of \(C_{n}\times C_{6}\)
topic_facet group ring
integral group ring
unit group
unit problem
16U60
16S34
format Article
author Küsmüş, Ömer
author_facet Küsmüş, Ömer
author_sort Küsmüş, Ömer
title On the units of integral group ring of \(C_{n}\times C_{6}\)
title_short On the units of integral group ring of \(C_{n}\times C_{6}\)
title_full On the units of integral group ring of \(C_{n}\times C_{6}\)
title_fullStr On the units of integral group ring of \(C_{n}\times C_{6}\)
title_full_unstemmed On the units of integral group ring of \(C_{n}\times C_{6}\)
title_sort on the units of integral group ring of \(c_{n}\times c_{6}\)
description There are many kind of open problems with varying difficulty on units in a given integral group ring. In this note, we characterize the unit group of the integral group ring of \(C_{n}\times C_{6}\) where \(C_{n}=\langle a:a^{n}=1\rangle\) and \(C_{6}=\langle x:x^{6}=1\rangle\). We show that \(\mathcal{U}_{1}(\mathbb{Z}[C_{n}\times C_{6}])\) can be expressed in terms of its 4 subgroups. Furthermore, forms of units in these subgroups are described by the unit group \(\mathcal{U}_{1}(\mathbb{Z}C_{n})\). Notations mostly follow \cite{sehgal2002}.
publisher Lugansk National Taras Shevchenko University
publishDate 2015
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/104
work_keys_str_mv AT kusmusomer ontheunitsofintegralgroupringofcntimesc6
first_indexed 2024-04-12T06:26:26Z
last_indexed 2024-04-12T06:26:26Z
_version_ 1796109215371100160