On weakly semisimple derivations of the polynomial ring in two variables
Let \(\mathbb K\) be an algebraically closed field of characteristic zero and \(\mathbb K[x,y]\) the polynomial ring. Every element \(f\in \mathbb K[x,y]\) determines the Jacobian derivation \(D_f\) of \(\mathbb K[x,y]\) by the rule D_f(h) = det J(f,h), where J(f,h) is the Jacobian matrix of the pol...
Saved in:
| Date: | 2018 |
|---|---|
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
Lugansk National Taras Shevchenko University
2018
|
| Subjects: | |
| Online Access: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1046 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete MathematicsBe the first to leave a comment!