On closures in semitopological inverse semigroups with continuous inversion

We study the closures of subgroups, semilattices and different kinds of semigroup extensions in semitopological inverse semigroups with continuous inversion. In particularly we show that a topological group \(G\) is \(H\)-closed in the class of semitopological inverse semigroups with continuous inve...

Full description

Saved in:
Bibliographic Details
Date:2018
Main Author: Gutik, Oleg
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2018
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1047
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Description
Summary:We study the closures of subgroups, semilattices and different kinds of semigroup extensions in semitopological inverse semigroups with continuous inversion. In particularly we show that a topological group \(G\) is \(H\)-closed in the class of semitopological inverse semigroups with continuous inversion if and only if \(G\) is compact, a Hausdorff linearly ordered topological semilattice \(E\) is \(H\)-closed in the class of semitopological semilattices if and only if \(E\) is \(H\)-closed in the class of topological semilattices, and a topological Brandt \(\lambda^0\)-extension of \(S\) is (absolutely) \(H\)-closed in the class of semitopological inverse semigroups with continuous inversion if and only if so is \(S\). Also, we construct an example of an \(H\)-closed non-absolutely \(H\)-closed semitopological semilattice in the class of semitopological semilattices.