Preradicals, closure operators in \(R\)-Mod and connection between them

For a module category \(R\)-Mod the class \(\mathbb{PR}\) of preradicals and the class \(\,\mathbb{CO} \,\) of closure operators are studied. The relations between these classes are realized by three mappings: \(\Phi : \mathbb{CO} \to \mathbb{PR}\) and \(\,\Psi_1, \Psi_2 : \mathbb{PR} \to \mathbb{CO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
1. Verfasser: Kashu, A. I.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1048
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Beschreibung
Zusammenfassung:For a module category \(R\)-Mod the class \(\mathbb{PR}\) of preradicals and the class \(\,\mathbb{CO} \,\) of closure operators are studied. The relations between these classes are realized by three mappings: \(\Phi : \mathbb{CO} \to \mathbb{PR}\) and \(\,\Psi_1, \Psi_2 : \mathbb{PR} \to \mathbb{CO}\). The impact of these mappings on the operations in \(\mathbb{PR}\) and \(\mathbb{CO}\) (meet, join, product, coproduct) is investigated. It is established that in most cases the considered mappings preserve the lattice operations (meet and join), while the other two operations are converted one into another (i.e. the product into the coproduct and vice versa).