On graphs with graphic imbalance sequences

The imbalance of the edge e=uv in a graph \(G\) is the value \(imb_{G}(e)=|d_{G}(u)-d_{G}(v)|\). We prove that the sequence \(M_{G}\) of all edge imbalances in \(G\) is graphic for several classes of graphs including trees, graphs in which all non-leaf vertices form a clique and the so-called comple...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Kozerenko, Sergiy, Skochko, Volodymyr
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1049
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:The imbalance of the edge e=uv in a graph \(G\) is the value \(imb_{G}(e)=|d_{G}(u)-d_{G}(v)|\). We prove that the sequence \(M_{G}\) of all edge imbalances in \(G\) is graphic for several classes of graphs including trees, graphs in which all non-leaf vertices form a clique and the so-called complete extensions of paths, cycles and complete graphs. Also, we formulate two interesting conjectures related to graphicality of \(M_{G}\).