On graphs with graphic imbalance sequences
The imbalance of the edge e=uv in a graph \(G\) is the value \(imb_{G}(e)=|d_{G}(u)-d_{G}(v)|\). We prove that the sequence \(M_{G}\) of all edge imbalances in \(G\) is graphic for several classes of graphs including trees, graphs in which all non-leaf vertices form a clique and the so-called comple...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1049 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematicsid |
oai:ojs.admjournal.luguniv.edu.ua:article-1049 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-10492018-04-26T02:28:53Z On graphs with graphic imbalance sequences Kozerenko, Sergiy Skochko, Volodymyr edge imbalance, graph irregularity, graphic sequence 05C07, 05C99 The imbalance of the edge e=uv in a graph \(G\) is the value \(imb_{G}(e)=|d_{G}(u)-d_{G}(v)|\). We prove that the sequence \(M_{G}\) of all edge imbalances in \(G\) is graphic for several classes of graphs including trees, graphs in which all non-leaf vertices form a clique and the so-called complete extensions of paths, cycles and complete graphs. Also, we formulate two interesting conjectures related to graphicality of \(M_{G}\). Lugansk National Taras Shevchenko University 2018-04-26 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1049 Algebra and Discrete Mathematics; Vol 18, No 1 (2014) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1049/571 Copyright (c) 2018 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
collection |
OJS |
language |
English |
topic |
edge imbalance graph irregularity graphic sequence 05C07 05C99 |
spellingShingle |
edge imbalance graph irregularity graphic sequence 05C07 05C99 Kozerenko, Sergiy Skochko, Volodymyr On graphs with graphic imbalance sequences |
topic_facet |
edge imbalance graph irregularity graphic sequence 05C07 05C99 |
format |
Article |
author |
Kozerenko, Sergiy Skochko, Volodymyr |
author_facet |
Kozerenko, Sergiy Skochko, Volodymyr |
author_sort |
Kozerenko, Sergiy |
title |
On graphs with graphic imbalance sequences |
title_short |
On graphs with graphic imbalance sequences |
title_full |
On graphs with graphic imbalance sequences |
title_fullStr |
On graphs with graphic imbalance sequences |
title_full_unstemmed |
On graphs with graphic imbalance sequences |
title_sort |
on graphs with graphic imbalance sequences |
description |
The imbalance of the edge e=uv in a graph \(G\) is the value \(imb_{G}(e)=|d_{G}(u)-d_{G}(v)|\). We prove that the sequence \(M_{G}\) of all edge imbalances in \(G\) is graphic for several classes of graphs including trees, graphs in which all non-leaf vertices form a clique and the so-called complete extensions of paths, cycles and complete graphs. Also, we formulate two interesting conjectures related to graphicality of \(M_{G}\). |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2018 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1049 |
work_keys_str_mv |
AT kozerenkosergiy ongraphswithgraphicimbalancesequences AT skochkovolodymyr ongraphswithgraphicimbalancesequences |
first_indexed |
2024-04-12T06:25:33Z |
last_indexed |
2024-04-12T06:25:33Z |
_version_ |
1796109204802502656 |