On graphs with graphic imbalance sequences

The imbalance of the edge e=uv in a graph \(G\) is the value \(imb_{G}(e)=|d_{G}(u)-d_{G}(v)|\). We prove that the sequence \(M_{G}\) of all edge imbalances in \(G\) is graphic for several classes of graphs including trees, graphs in which all non-leaf vertices form a clique and the so-called comple...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Kozerenko, Sergiy, Skochko, Volodymyr
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1049
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1049
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-10492018-04-26T02:28:53Z On graphs with graphic imbalance sequences Kozerenko, Sergiy Skochko, Volodymyr edge imbalance, graph irregularity, graphic sequence 05C07, 05C99 The imbalance of the edge e=uv in a graph \(G\) is the value \(imb_{G}(e)=|d_{G}(u)-d_{G}(v)|\). We prove that the sequence \(M_{G}\) of all edge imbalances in \(G\) is graphic for several classes of graphs including trees, graphs in which all non-leaf vertices form a clique and the so-called complete extensions of paths, cycles and complete graphs. Also, we formulate two interesting conjectures related to graphicality of \(M_{G}\). Lugansk National Taras Shevchenko University 2018-04-26 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1049 Algebra and Discrete Mathematics; Vol 18, No 1 (2014) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1049/571 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic edge imbalance
graph irregularity
graphic sequence
05C07
05C99
spellingShingle edge imbalance
graph irregularity
graphic sequence
05C07
05C99
Kozerenko, Sergiy
Skochko, Volodymyr
On graphs with graphic imbalance sequences
topic_facet edge imbalance
graph irregularity
graphic sequence
05C07
05C99
format Article
author Kozerenko, Sergiy
Skochko, Volodymyr
author_facet Kozerenko, Sergiy
Skochko, Volodymyr
author_sort Kozerenko, Sergiy
title On graphs with graphic imbalance sequences
title_short On graphs with graphic imbalance sequences
title_full On graphs with graphic imbalance sequences
title_fullStr On graphs with graphic imbalance sequences
title_full_unstemmed On graphs with graphic imbalance sequences
title_sort on graphs with graphic imbalance sequences
description The imbalance of the edge e=uv in a graph \(G\) is the value \(imb_{G}(e)=|d_{G}(u)-d_{G}(v)|\). We prove that the sequence \(M_{G}\) of all edge imbalances in \(G\) is graphic for several classes of graphs including trees, graphs in which all non-leaf vertices form a clique and the so-called complete extensions of paths, cycles and complete graphs. Also, we formulate two interesting conjectures related to graphicality of \(M_{G}\).
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1049
work_keys_str_mv AT kozerenkosergiy ongraphswithgraphicimbalancesequences
AT skochkovolodymyr ongraphswithgraphicimbalancesequences
first_indexed 2024-04-12T06:25:33Z
last_indexed 2024-04-12T06:25:33Z
_version_ 1796109204802502656