Effective ring
In this paper we will investigate commutative Bezout domains whose finite homomorphic images are semipotent rings. Among such commutative Bezout rings we consider a new class of rings and call them an effective rings. Furthermore we prove that effective rings are elementary divisor rings.
Gespeichert in:
| Datum: | 2018 |
|---|---|
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1052 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| id |
oai:ojs.admjournal.luguniv.edu.ua:article-1052 |
|---|---|
| record_format |
ojs |
| spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-10522018-04-26T02:28:53Z Effective ring Zabavsky, B. V. Kuznitska, B. M. Bezout ring, exchange ring, clean ring, effective ring, elementary divisor ring, idempotent of stable range 1, neat ring 13F99 In this paper we will investigate commutative Bezout domains whose finite homomorphic images are semipotent rings. Among such commutative Bezout rings we consider a new class of rings and call them an effective rings. Furthermore we prove that effective rings are elementary divisor rings. Lugansk National Taras Shevchenko University 2018-04-26 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1052 Algebra and Discrete Mathematics; Vol 18, No 1 (2014) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1052/574 Copyright (c) 2018 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2018-04-26T02:28:53Z |
| collection |
OJS |
| language |
English |
| topic |
Bezout ring exchange ring clean ring effective ring elementary divisor ring idempotent of stable range 1 neat ring 13F99 |
| spellingShingle |
Bezout ring exchange ring clean ring effective ring elementary divisor ring idempotent of stable range 1 neat ring 13F99 Zabavsky, B. V. Kuznitska, B. M. Effective ring |
| topic_facet |
Bezout ring exchange ring clean ring effective ring elementary divisor ring idempotent of stable range 1 neat ring 13F99 |
| format |
Article |
| author |
Zabavsky, B. V. Kuznitska, B. M. |
| author_facet |
Zabavsky, B. V. Kuznitska, B. M. |
| author_sort |
Zabavsky, B. V. |
| title |
Effective ring |
| title_short |
Effective ring |
| title_full |
Effective ring |
| title_fullStr |
Effective ring |
| title_full_unstemmed |
Effective ring |
| title_sort |
effective ring |
| description |
In this paper we will investigate commutative Bezout domains whose finite homomorphic images are semipotent rings. Among such commutative Bezout rings we consider a new class of rings and call them an effective rings. Furthermore we prove that effective rings are elementary divisor rings. |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2018 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1052 |
| work_keys_str_mv |
AT zabavskybv effectivering AT kuznitskabm effectivering |
| first_indexed |
2025-07-17T10:34:58Z |
| last_indexed |
2025-07-17T10:34:58Z |
| _version_ |
1837890010610663424 |