Effective ring

In this paper we will investigate commutative Bezout domains whose finite homomorphic images are semipotent rings. Among such commutative Bezout rings we consider a new class of rings and call them an effective rings. Furthermore we prove that effective rings are elementary divisor rings.

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Zabavsky, B. V., Kuznitska, B. M.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1052
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1052
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-10522018-04-26T02:28:53Z Effective ring Zabavsky, B. V. Kuznitska, B. M. Bezout ring, exchange ring, clean ring, effective ring, elementary divisor ring, idempotent of stable range 1, neat ring 13F99 In this paper we will investigate commutative Bezout domains whose finite homomorphic images are semipotent rings. Among such commutative Bezout rings we consider a new class of rings and call them an effective rings. Furthermore we prove that effective rings are elementary divisor rings. Lugansk National Taras Shevchenko University 2018-04-26 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1052 Algebra and Discrete Mathematics; Vol 18, No 1 (2014) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1052/574 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-04-26T02:28:53Z
collection OJS
language English
topic Bezout ring
exchange ring
clean ring
effective ring
elementary divisor ring
idempotent of stable range 1
neat ring
13F99
spellingShingle Bezout ring
exchange ring
clean ring
effective ring
elementary divisor ring
idempotent of stable range 1
neat ring
13F99
Zabavsky, B. V.
Kuznitska, B. M.
Effective ring
topic_facet Bezout ring
exchange ring
clean ring
effective ring
elementary divisor ring
idempotent of stable range 1
neat ring
13F99
format Article
author Zabavsky, B. V.
Kuznitska, B. M.
author_facet Zabavsky, B. V.
Kuznitska, B. M.
author_sort Zabavsky, B. V.
title Effective ring
title_short Effective ring
title_full Effective ring
title_fullStr Effective ring
title_full_unstemmed Effective ring
title_sort effective ring
description In this paper we will investigate commutative Bezout domains whose finite homomorphic images are semipotent rings. Among such commutative Bezout rings we consider a new class of rings and call them an effective rings. Furthermore we prove that effective rings are elementary divisor rings.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1052
work_keys_str_mv AT zabavskybv effectivering
AT kuznitskabm effectivering
first_indexed 2025-07-17T10:34:58Z
last_indexed 2025-07-17T10:34:58Z
_version_ 1837890010610663424