Co-intersection graph of submodules of a module
Let \(M\) be a unitary left \(R\)-module where \(R\) is a ring with identity. The co-intersection graph of proper submodules of \(M\), denoted by \(\Omega(M)\), is an undirected simple graph whose the vertex set \(V(\Omega)\) is a set of all non-trivial submodules of \(M\) and there is an edge betwe...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2016
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/107 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete MathematicsРезюме: | Let \(M\) be a unitary left \(R\)-module where \(R\) is a ring with identity. The co-intersection graph of proper submodules of \(M\), denoted by \(\Omega(M)\), is an undirected simple graph whose the vertex set \(V(\Omega)\) is a set of all non-trivial submodules of \(M\) and there is an edge between two distinct vertices \(N\) and \(K\) if and only if \(N+K\neq M\). In this paper we investigate connections between the graph-theoretic properties of \(\Omega(M)\) and some algebraic properties of modules . We characterize all of modules for which the co-intersection graph of submodules is connected. Also the diameter and the girth of \(\Omega(M)\) are determined. We study the clique number and the chromatic number of \(\Omega(M)\). |
---|