Co-intersection graph of submodules of a module

Let \(M\) be a unitary left \(R\)-module where \(R\) is a ring with identity. The co-intersection graph of proper submodules of \(M\), denoted by \(\Omega(M)\), is an undirected simple graph whose the vertex set \(V(\Omega)\) is a set of all non-trivial submodules of \(M\) and there is an edge betwe...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Mahdavi, Lotf Ali, Talebi, Yahya
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2016
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/107
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-107
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-1072016-05-11T05:58:15Z Co-intersection graph of submodules of a module Mahdavi, Lotf Ali Talebi, Yahya co-intersection graph, clique number, chromatic number 05C15, 05C25, 05C69, 16D10 Let \(M\) be a unitary left \(R\)-module where \(R\) is a ring with identity. The co-intersection graph of proper submodules of \(M\), denoted by \(\Omega(M)\), is an undirected simple graph whose the vertex set \(V(\Omega)\) is a set of all non-trivial submodules of \(M\) and there is an edge between two distinct vertices \(N\) and \(K\) if and only if \(N+K\neq M\). In this paper we investigate connections between the graph-theoretic properties of \(\Omega(M)\) and some algebraic properties of modules . We characterize all of modules for which the co-intersection graph of submodules is connected. Also the diameter and the girth of \(\Omega(M)\) are determined. We study the clique number and the chromatic number of \(\Omega(M)\). Lugansk National Taras Shevchenko University 2016-05-10 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/107 Algebra and Discrete Mathematics; Vol 21, No 1 (2016) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/107/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/107/19 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/107/20 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/107/21 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/107/22 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/107/23 Copyright (c) 2016 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic co-intersection graph
clique number
chromatic number
05C15
05C25
05C69
16D10
spellingShingle co-intersection graph
clique number
chromatic number
05C15
05C25
05C69
16D10
Mahdavi, Lotf Ali
Talebi, Yahya
Co-intersection graph of submodules of a module
topic_facet co-intersection graph
clique number
chromatic number
05C15
05C25
05C69
16D10
format Article
author Mahdavi, Lotf Ali
Talebi, Yahya
author_facet Mahdavi, Lotf Ali
Talebi, Yahya
author_sort Mahdavi, Lotf Ali
title Co-intersection graph of submodules of a module
title_short Co-intersection graph of submodules of a module
title_full Co-intersection graph of submodules of a module
title_fullStr Co-intersection graph of submodules of a module
title_full_unstemmed Co-intersection graph of submodules of a module
title_sort co-intersection graph of submodules of a module
description Let \(M\) be a unitary left \(R\)-module where \(R\) is a ring with identity. The co-intersection graph of proper submodules of \(M\), denoted by \(\Omega(M)\), is an undirected simple graph whose the vertex set \(V(\Omega)\) is a set of all non-trivial submodules of \(M\) and there is an edge between two distinct vertices \(N\) and \(K\) if and only if \(N+K\neq M\). In this paper we investigate connections between the graph-theoretic properties of \(\Omega(M)\) and some algebraic properties of modules . We characterize all of modules for which the co-intersection graph of submodules is connected. Also the diameter and the girth of \(\Omega(M)\) are determined. We study the clique number and the chromatic number of \(\Omega(M)\).
publisher Lugansk National Taras Shevchenko University
publishDate 2016
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/107
work_keys_str_mv AT mahdavilotfali cointersectiongraphofsubmodulesofamodule
AT talebiyahya cointersectiongraphofsubmodulesofamodule
first_indexed 2024-04-12T06:27:19Z
last_indexed 2024-04-12T06:27:19Z
_version_ 1796109244096839680