On some Leibniz algebras, having small dimension

The first step in the study of all types of algebras is the description of such algebras having small dimensions. The structure of 3-dimensional Leibniz algebras is more complicated than 1 and 2-dimensional cases. In this paper, we consider the structure of Leibniz algebras of dimension 3 over the f...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2019
Автор: Yashchuk, Viktoriia S.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2019
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1070
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1070
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-10702019-07-14T19:54:06Z On some Leibniz algebras, having small dimension Yashchuk, Viktoriia S. Leibniz algebra, ideal, factor-algebra, Leibniz kernel, finite dimensional Leibniz algebra, nilpotent Leibniz algebra, left (right) center, Frattini subalgebra 17A32, 17A60 The first step in the study of all types of algebras is the description of such algebras having small dimensions. The structure of 3-dimensional Leibniz algebras is more complicated than 1 and 2-dimensional cases. In this paper, we consider the structure of Leibniz algebras of dimension 3 over the finite fields. In some cases, the structure of the algebra essentially depends on the characteristic of the field, in others on the solvability of specific equations in the field, and so on. Lugansk National Taras Shevchenko University 2019-07-14 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1070 Algebra and Discrete Mathematics; Vol 27, No 2 (2019) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1070/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1070/308 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1070/539 Copyright (c) 2019 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2019-07-14T19:54:06Z
collection OJS
language English
topic Leibniz algebra
ideal
factor-algebra
Leibniz kernel
finite dimensional Leibniz algebra
nilpotent Leibniz algebra
left (right) center
Frattini subalgebra
17A32
17A60
spellingShingle Leibniz algebra
ideal
factor-algebra
Leibniz kernel
finite dimensional Leibniz algebra
nilpotent Leibniz algebra
left (right) center
Frattini subalgebra
17A32
17A60
Yashchuk, Viktoriia S.
On some Leibniz algebras, having small dimension
topic_facet Leibniz algebra
ideal
factor-algebra
Leibniz kernel
finite dimensional Leibniz algebra
nilpotent Leibniz algebra
left (right) center
Frattini subalgebra
17A32
17A60
format Article
author Yashchuk, Viktoriia S.
author_facet Yashchuk, Viktoriia S.
author_sort Yashchuk, Viktoriia S.
title On some Leibniz algebras, having small dimension
title_short On some Leibniz algebras, having small dimension
title_full On some Leibniz algebras, having small dimension
title_fullStr On some Leibniz algebras, having small dimension
title_full_unstemmed On some Leibniz algebras, having small dimension
title_sort on some leibniz algebras, having small dimension
description The first step in the study of all types of algebras is the description of such algebras having small dimensions. The structure of 3-dimensional Leibniz algebras is more complicated than 1 and 2-dimensional cases. In this paper, we consider the structure of Leibniz algebras of dimension 3 over the finite fields. In some cases, the structure of the algebra essentially depends on the characteristic of the field, in others on the solvability of specific equations in the field, and so on.
publisher Lugansk National Taras Shevchenko University
publishDate 2019
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1070
work_keys_str_mv AT yashchukviktoriias onsomeleibnizalgebrashavingsmalldimension
first_indexed 2025-07-17T10:35:00Z
last_indexed 2025-07-17T10:35:00Z
_version_ 1837890011939209216