Prime radical of Ore extensions over \(\delta\)-rigid rings

Let R be a ring. Let \(\sigma\) be an automorphism of R and \(\delta\) be a  \(\sigma\)-derivation of R. We say that R is a \(\delta\)-rigid ring if \(a\delta(a)\in P(R)\) implies \(a\in P(R)\), \(a \in R\); where P(R) is the prime radical of R. In this article, we find a relation between the prime...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Bhat, V. K.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1073
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1073
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-10732018-04-04T08:31:48Z Prime radical of Ore extensions over \(\delta\)-rigid rings Bhat, V. K. Radical, automorphism, derivation, completely prime, \(\delta\)-ring, Q-algebra 16-XX; 16P40,16P50,16U20 Let R be a ring. Let \(\sigma\) be an automorphism of R and \(\delta\) be a  \(\sigma\)-derivation of R. We say that R is a \(\delta\)-rigid ring if \(a\delta(a)\in P(R)\) implies \(a\in P(R)\), \(a \in R\); where P(R) is the prime radical of R. In this article, we find a relation between the prime radical of a \(\delta\)-rigid ring R and that of \(R[x,\sigma,\delta]\). We generalize the result for a Noetherian Q-algebra (Q is the field of rational numbers). Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1073 Algebra and Discrete Mathematics; Vol 8, No 1 (2009) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1073/587 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-04-04T08:31:48Z
collection OJS
language English
topic Radical
automorphism
derivation
completely prime
\(\delta\)-ring
Q-algebra
16-XX
16P40,16P50,16U20
spellingShingle Radical
automorphism
derivation
completely prime
\(\delta\)-ring
Q-algebra
16-XX
16P40,16P50,16U20
Bhat, V. K.
Prime radical of Ore extensions over \(\delta\)-rigid rings
topic_facet Radical
automorphism
derivation
completely prime
\(\delta\)-ring
Q-algebra
16-XX
16P40,16P50,16U20
format Article
author Bhat, V. K.
author_facet Bhat, V. K.
author_sort Bhat, V. K.
title Prime radical of Ore extensions over \(\delta\)-rigid rings
title_short Prime radical of Ore extensions over \(\delta\)-rigid rings
title_full Prime radical of Ore extensions over \(\delta\)-rigid rings
title_fullStr Prime radical of Ore extensions over \(\delta\)-rigid rings
title_full_unstemmed Prime radical of Ore extensions over \(\delta\)-rigid rings
title_sort prime radical of ore extensions over \(\delta\)-rigid rings
description Let R be a ring. Let \(\sigma\) be an automorphism of R and \(\delta\) be a  \(\sigma\)-derivation of R. We say that R is a \(\delta\)-rigid ring if \(a\delta(a)\in P(R)\) implies \(a\in P(R)\), \(a \in R\); where P(R) is the prime radical of R. In this article, we find a relation between the prime radical of a \(\delta\)-rigid ring R and that of \(R[x,\sigma,\delta]\). We generalize the result for a Noetherian Q-algebra (Q is the field of rational numbers).
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1073
work_keys_str_mv AT bhatvk primeradicaloforeextensionsoverdeltarigidrings
first_indexed 2025-07-17T10:32:17Z
last_indexed 2025-07-17T10:32:17Z
_version_ 1837889841772101632