Partitions of groups into thin subsets

Let \(G\) be an infinite group with the identity \(e\), \(\kappa\) be an infinite cardinal \(\leqslant |G|\). A subset \(A\subset G\) is called \(\kappa\)-thin if \(|gA\cap A|\leqslant\kappa\) for every \(g\in G\setminus\{e\}\). We calculate the minimal cardinal \(\mu(G,\kappa)\) such that \(G\) can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
1. Verfasser: Protasov, Igor
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1102
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Beschreibung
Zusammenfassung:Let \(G\) be an infinite group with the identity \(e\), \(\kappa\) be an infinite cardinal \(\leqslant |G|\). A subset \(A\subset G\) is called \(\kappa\)-thin if \(|gA\cap A|\leqslant\kappa\) for every \(g\in G\setminus\{e\}\). We calculate the minimal cardinal \(\mu(G,\kappa)\) such that \(G\) can be partitioned in \(\mu(G,\kappa)\) \(\kappa\)-thin subsets. In particular, we show that the statement \(\mu(\mathbb{R},\aleph_0)=\aleph_0\) is equivalent to the Continuum Hypothesis.