Partitions of groups into thin subsets
Let \(G\) be an infinite group with the identity \(e\), \(\kappa\) be an infinite cardinal \(\leqslant |G|\). A subset \(A\subset G\) is called \(\kappa\)-thin if \(|gA\cap A|\leqslant\kappa\) for every \(g\in G\setminus\{e\}\). We calculate the minimal cardinal \(\mu(G,\kappa)\) such that \(G\) can...
Gespeichert in:
| Datum: | 2018 |
|---|---|
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1102 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| Zusammenfassung: | Let \(G\) be an infinite group with the identity \(e\), \(\kappa\) be an infinite cardinal \(\leqslant |G|\). A subset \(A\subset G\) is called \(\kappa\)-thin if \(|gA\cap A|\leqslant\kappa\) for every \(g\in G\setminus\{e\}\). We calculate the minimal cardinal \(\mu(G,\kappa)\) such that \(G\) can be partitioned in \(\mu(G,\kappa)\) \(\kappa\)-thin subsets. In particular, we show that the statement \(\mu(\mathbb{R},\aleph_0)=\aleph_0\) is equivalent to the Continuum Hypothesis. |
|---|