Partitions of groups into thin subsets

Let \(G\) be an infinite group with the identity \(e\), \(\kappa\) be an infinite cardinal \(\leqslant |G|\). A subset \(A\subset G\) is called \(\kappa\)-thin if \(|gA\cap A|\leqslant\kappa\) for every \(g\in G\setminus\{e\}\). We calculate the minimal cardinal \(\mu(G,\kappa)\) such that \(G\) can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
1. Verfasser: Protasov, Igor
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1102
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1102
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-11022018-04-04T09:24:09Z Partitions of groups into thin subsets Protasov, Igor k-thin subsets of a group, partition of a group 03E75, 20F99, 20K99 Let \(G\) be an infinite group with the identity \(e\), \(\kappa\) be an infinite cardinal \(\leqslant |G|\). A subset \(A\subset G\) is called \(\kappa\)-thin if \(|gA\cap A|\leqslant\kappa\) for every \(g\in G\setminus\{e\}\). We calculate the minimal cardinal \(\mu(G,\kappa)\) such that \(G\) can be partitioned in \(\mu(G,\kappa)\) \(\kappa\)-thin subsets. In particular, we show that the statement \(\mu(\mathbb{R},\aleph_0)=\aleph_0\) is equivalent to the Continuum Hypothesis. Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1102 Algebra and Discrete Mathematics; Vol 11, No 2 (2011) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1102/601 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-04-04T09:24:09Z
collection OJS
language English
topic k-thin subsets of a group
partition of a group
03E75
20F99
20K99
spellingShingle k-thin subsets of a group
partition of a group
03E75
20F99
20K99
Protasov, Igor
Partitions of groups into thin subsets
topic_facet k-thin subsets of a group
partition of a group
03E75
20F99
20K99
format Article
author Protasov, Igor
author_facet Protasov, Igor
author_sort Protasov, Igor
title Partitions of groups into thin subsets
title_short Partitions of groups into thin subsets
title_full Partitions of groups into thin subsets
title_fullStr Partitions of groups into thin subsets
title_full_unstemmed Partitions of groups into thin subsets
title_sort partitions of groups into thin subsets
description Let \(G\) be an infinite group with the identity \(e\), \(\kappa\) be an infinite cardinal \(\leqslant |G|\). A subset \(A\subset G\) is called \(\kappa\)-thin if \(|gA\cap A|\leqslant\kappa\) for every \(g\in G\setminus\{e\}\). We calculate the minimal cardinal \(\mu(G,\kappa)\) such that \(G\) can be partitioned in \(\mu(G,\kappa)\) \(\kappa\)-thin subsets. In particular, we show that the statement \(\mu(\mathbb{R},\aleph_0)=\aleph_0\) is equivalent to the Continuum Hypothesis.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1102
work_keys_str_mv AT protasovigor partitionsofgroupsintothinsubsets
first_indexed 2025-07-17T10:36:03Z
last_indexed 2025-07-17T10:36:03Z
_version_ 1837890078372790272