Normal high order elements in finite field extensions based on the cyclotomic polynomials
We consider elements which are both of high multiplicative order and normal in extensions \(F_{q^{m} } \) of the field \(F_{q} \). If the extension is defined by a cyclotomic polynomial, we construct such elements explicitly and give explicit lower bounds on their orders.
Збережено в:
| Дата: | 2020 |
|---|---|
| Автори: | Popovych, R., Skuratovskii, R. |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2020
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1117 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete MathematicsСхожі ресурси
-
Normal high order elements in finite field extensions based on the cyclotomic polynomials
за авторством: Popovych, R., та інші
Опубліковано: (2020) -
On elements of high order in general finite fields
за авторством: Popovych, Roman
Опубліковано: (2018) -
Multiplicative orders of elements in Conway's towers of finite fields
за авторством: Popovych, Roman
Опубліковано: (2018) -
Normal high order elements in finite field extensions based on the cyclotomic polynomials
за авторством: Popovych, R., та інші
Опубліковано: (2020) -
Sharpening of the explicit lower bounds for the order of elements in finite field extensions based on cyclotomic polynomials
за авторством: Popovych, R.
Опубліковано: (2014)