Geometrical equivalence and action type geometrical equivalence of group representations
In this paper we construct an example of two representations \((V_{1},G_{1})\) and \((V_{2},G_{2})\) which are action type geometrically equivalent and groups \(G_{1}\) and \(G_{2}\) are geometrically equivalent, but the representations \((V_{1},G_{1})\) and \((V_{2},G_{2})\) are not geometrically e...
Збережено в:
Дата: | 2021 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2021
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1127 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematicsid |
oai:ojs.admjournal.luguniv.edu.ua:article-1127 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-11272021-01-29T09:38:49Z Geometrical equivalence and action type geometrical equivalence of group representations Simoes da Silva, J. Tsurkov, A. universal algebraic geometry, group representations 20C99, 08C10 In this paper we construct an example of two representations \((V_{1},G_{1})\) and \((V_{2},G_{2})\) which are action type geometrically equivalent and groups \(G_{1}\) and \(G_{2}\) are geometrically equivalent, but the representations \((V_{1},G_{1})\) and \((V_{2},G_{2})\) are not geometrically equivalent. Lugansk National Taras Shevchenko University Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES (Coordination for the Improvement of Higher Education Personnel, Brazil) 2021-01-29 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1127 10.12958/adm1127 Algebra and Discrete Mathematics; Vol 30, No 2 (2020) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1127/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1127/352 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1127/739 Copyright (c) 2021 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
collection |
OJS |
language |
English |
topic |
universal algebraic geometry group representations 20C99 08C10 |
spellingShingle |
universal algebraic geometry group representations 20C99 08C10 Simoes da Silva, J. Tsurkov, A. Geometrical equivalence and action type geometrical equivalence of group representations |
topic_facet |
universal algebraic geometry group representations 20C99 08C10 |
format |
Article |
author |
Simoes da Silva, J. Tsurkov, A. |
author_facet |
Simoes da Silva, J. Tsurkov, A. |
author_sort |
Simoes da Silva, J. |
title |
Geometrical equivalence and action type geometrical equivalence of group representations |
title_short |
Geometrical equivalence and action type geometrical equivalence of group representations |
title_full |
Geometrical equivalence and action type geometrical equivalence of group representations |
title_fullStr |
Geometrical equivalence and action type geometrical equivalence of group representations |
title_full_unstemmed |
Geometrical equivalence and action type geometrical equivalence of group representations |
title_sort |
geometrical equivalence and action type geometrical equivalence of group representations |
description |
In this paper we construct an example of two representations \((V_{1},G_{1})\) and \((V_{2},G_{2})\) which are action type geometrically equivalent and groups \(G_{1}\) and \(G_{2}\) are geometrically equivalent, but the representations \((V_{1},G_{1})\) and \((V_{2},G_{2})\) are not geometrically equivalent. |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2021 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1127 |
work_keys_str_mv |
AT simoesdasilvaj geometricalequivalenceandactiontypegeometricalequivalenceofgrouprepresentations AT tsurkova geometricalequivalenceandactiontypegeometricalequivalenceofgrouprepresentations |
first_indexed |
2024-04-12T06:27:20Z |
last_indexed |
2024-04-12T06:27:20Z |
_version_ |
1796109244736471040 |