Geometrical equivalence and action type geometrical equivalence of group representations

In this paper we construct an example of two representations \((V_{1},G_{1})\) and \((V_{2},G_{2})\) which are action type geometrically equivalent and groups \(G_{1}\) and \(G_{2}\) are geometrically equivalent, but the representations \((V_{1},G_{1})\) and \((V_{2},G_{2})\) are not geometrically e...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2021
Автори: Simoes da Silva, J., Tsurkov, A.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2021
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1127
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1127
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-11272021-01-29T09:38:49Z Geometrical equivalence and action type geometrical equivalence of group representations Simoes da Silva, J. Tsurkov, A. universal algebraic geometry, group representations 20C99, 08C10 In this paper we construct an example of two representations \((V_{1},G_{1})\) and \((V_{2},G_{2})\) which are action type geometrically equivalent and groups \(G_{1}\) and \(G_{2}\) are geometrically equivalent, but the representations \((V_{1},G_{1})\) and \((V_{2},G_{2})\) are not geometrically equivalent. Lugansk National Taras Shevchenko University Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES (Coordination for the Improvement of Higher Education Personnel, Brazil) 2021-01-29 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1127 10.12958/adm1127 Algebra and Discrete Mathematics; Vol 30, No 2 (2020) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1127/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1127/352 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1127/739 Copyright (c) 2021 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic universal algebraic geometry
group representations
20C99
08C10
spellingShingle universal algebraic geometry
group representations
20C99
08C10
Simoes da Silva, J.
Tsurkov, A.
Geometrical equivalence and action type geometrical equivalence of group representations
topic_facet universal algebraic geometry
group representations
20C99
08C10
format Article
author Simoes da Silva, J.
Tsurkov, A.
author_facet Simoes da Silva, J.
Tsurkov, A.
author_sort Simoes da Silva, J.
title Geometrical equivalence and action type geometrical equivalence of group representations
title_short Geometrical equivalence and action type geometrical equivalence of group representations
title_full Geometrical equivalence and action type geometrical equivalence of group representations
title_fullStr Geometrical equivalence and action type geometrical equivalence of group representations
title_full_unstemmed Geometrical equivalence and action type geometrical equivalence of group representations
title_sort geometrical equivalence and action type geometrical equivalence of group representations
description In this paper we construct an example of two representations \((V_{1},G_{1})\) and \((V_{2},G_{2})\) which are action type geometrically equivalent and groups \(G_{1}\) and \(G_{2}\) are geometrically equivalent, but the representations \((V_{1},G_{1})\) and \((V_{2},G_{2})\) are not geometrically equivalent.
publisher Lugansk National Taras Shevchenko University
publishDate 2021
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1127
work_keys_str_mv AT simoesdasilvaj geometricalequivalenceandactiontypegeometricalequivalenceofgrouprepresentations
AT tsurkova geometricalequivalenceandactiontypegeometricalequivalenceofgrouprepresentations
first_indexed 2024-04-12T06:27:20Z
last_indexed 2024-04-12T06:27:20Z
_version_ 1796109244736471040