On \(p\)-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups
Let \(G\) be a finite group and \(P\) be a \(p\)-subgroup of \(G\). If \(P\) is a Sylow subgroup of some normal subgroup of \(G\), then we say that \(P\) is normally embedded in \(G\). Groups with normally embedded maximal subgroups of Sylow \(p\)-subgroup, where \({(|G|, p-1)=1}\), are studied. In...
Збережено в:
Дата: | 2020 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2020
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1128 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete MathematicsРезюме: | Let \(G\) be a finite group and \(P\) be a \(p\)-subgroup of \(G\). If \(P\) is a Sylow subgroup of some normal subgroup of \(G\), then we say that \(P\) is normally embedded in \(G\). Groups with normally embedded maximal subgroups of Sylow \(p\)-subgroup, where \({(|G|, p-1)=1}\), are studied. In particular, the \(p\)-nilpotency of such groups is proved. |
---|