On \(p\)-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups

Let \(G\) be a finite group and \(P\) be a \(p\)-subgroup of \(G\). If \(P\) is a Sylow subgroup of some normal subgroup of \(G\), then we say that \(P\) is normally embedded in \(G\). Groups with normally embedded maximal subgroups of Sylow \(p\)-subgroup, where \({(|G|, p-1)=1}\), are studied. In...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2020
Автор: Trofimuk, A.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2020
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1128
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1128
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-11282020-05-14T18:27:22Z On \(p\)-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups Trofimuk, A. \(p\)-supersolvable group, normally embedded subgroup, maximal subgroup, Sylow subgroup 20D10 Let \(G\) be a finite group and \(P\) be a \(p\)-subgroup of \(G\). If \(P\) is a Sylow subgroup of some normal subgroup of \(G\), then we say that \(P\) is normally embedded in \(G\). Groups with normally embedded maximal subgroups of Sylow \(p\)-subgroup, where \({(|G|, p-1)=1}\), are studied. In particular, the \(p\)-nilpotency of such groups is proved. Lugansk National Taras Shevchenko University 2020-05-14 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1128 10.12958/adm1128 Algebra and Discrete Mathematics; Vol 29, No 1 (2020) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1128/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1128/356 Copyright (c) 2020 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic \(p\)-supersolvable group
normally embedded subgroup
maximal subgroup
Sylow subgroup
20D10
spellingShingle \(p\)-supersolvable group
normally embedded subgroup
maximal subgroup
Sylow subgroup
20D10
Trofimuk, A.
On \(p\)-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups
topic_facet \(p\)-supersolvable group
normally embedded subgroup
maximal subgroup
Sylow subgroup
20D10
format Article
author Trofimuk, A.
author_facet Trofimuk, A.
author_sort Trofimuk, A.
title On \(p\)-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups
title_short On \(p\)-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups
title_full On \(p\)-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups
title_fullStr On \(p\)-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups
title_full_unstemmed On \(p\)-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups
title_sort on \(p\)-nilpotency of finite group with normally embedded maximal subgroups of some sylow subgroups
description Let \(G\) be a finite group and \(P\) be a \(p\)-subgroup of \(G\). If \(P\) is a Sylow subgroup of some normal subgroup of \(G\), then we say that \(P\) is normally embedded in \(G\). Groups with normally embedded maximal subgroups of Sylow \(p\)-subgroup, where \({(|G|, p-1)=1}\), are studied. In particular, the \(p\)-nilpotency of such groups is proved.
publisher Lugansk National Taras Shevchenko University
publishDate 2020
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1128
work_keys_str_mv AT trofimuka onpnilpotencyoffinitegroupwithnormallyembeddedmaximalsubgroupsofsomesylowsubgroups
first_indexed 2024-04-12T06:27:20Z
last_indexed 2024-04-12T06:27:20Z
_version_ 1796109244842377216