On \(p\)-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups
Let \(G\) be a finite group and \(P\) be a \(p\)-subgroup of \(G\). If \(P\) is a Sylow subgroup of some normal subgroup of \(G\), then we say that \(P\) is normally embedded in \(G\). Groups with normally embedded maximal subgroups of Sylow \(p\)-subgroup, where \({(|G|, p-1)=1}\), are studied. In...
Збережено в:
Дата: | 2020 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2020
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1128 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematicsid |
oai:ojs.admjournal.luguniv.edu.ua:article-1128 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-11282020-05-14T18:27:22Z On \(p\)-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups Trofimuk, A. \(p\)-supersolvable group, normally embedded subgroup, maximal subgroup, Sylow subgroup 20D10 Let \(G\) be a finite group and \(P\) be a \(p\)-subgroup of \(G\). If \(P\) is a Sylow subgroup of some normal subgroup of \(G\), then we say that \(P\) is normally embedded in \(G\). Groups with normally embedded maximal subgroups of Sylow \(p\)-subgroup, where \({(|G|, p-1)=1}\), are studied. In particular, the \(p\)-nilpotency of such groups is proved. Lugansk National Taras Shevchenko University 2020-05-14 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1128 10.12958/adm1128 Algebra and Discrete Mathematics; Vol 29, No 1 (2020) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1128/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1128/356 Copyright (c) 2020 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
collection |
OJS |
language |
English |
topic |
\(p\)-supersolvable group normally embedded subgroup maximal subgroup Sylow subgroup 20D10 |
spellingShingle |
\(p\)-supersolvable group normally embedded subgroup maximal subgroup Sylow subgroup 20D10 Trofimuk, A. On \(p\)-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups |
topic_facet |
\(p\)-supersolvable group normally embedded subgroup maximal subgroup Sylow subgroup 20D10 |
format |
Article |
author |
Trofimuk, A. |
author_facet |
Trofimuk, A. |
author_sort |
Trofimuk, A. |
title |
On \(p\)-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups |
title_short |
On \(p\)-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups |
title_full |
On \(p\)-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups |
title_fullStr |
On \(p\)-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups |
title_full_unstemmed |
On \(p\)-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups |
title_sort |
on \(p\)-nilpotency of finite group with normally embedded maximal subgroups of some sylow subgroups |
description |
Let \(G\) be a finite group and \(P\) be a \(p\)-subgroup of \(G\). If \(P\) is a Sylow subgroup of some normal subgroup of \(G\), then we say that \(P\) is normally embedded in \(G\). Groups with normally embedded maximal subgroups of Sylow \(p\)-subgroup, where \({(|G|, p-1)=1}\), are studied. In particular, the \(p\)-nilpotency of such groups is proved. |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2020 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1128 |
work_keys_str_mv |
AT trofimuka onpnilpotencyoffinitegroupwithnormallyembeddedmaximalsubgroupsofsomesylowsubgroups |
first_indexed |
2024-04-12T06:27:20Z |
last_indexed |
2024-04-12T06:27:20Z |
_version_ |
1796109244842377216 |