Metrizable ball structures
A ball structure is a triple \((X,P,B)\), where \(X\), \(P\) are nonempty sets and, for any \(x\in X\), \(\alpha\in P\), \(B(x,\alpha)\) is a subset of \(X\), \(x\in B(x,\alpha)\), which is called a ball of radius \(\alpha\) around \(x\). We characterize up to isomorphism the ball structures related...
Збережено в:
| Дата: | 2018 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1152 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| id |
oai:ojs.admjournal.luguniv.edu.ua:article-1152 |
|---|---|
| record_format |
ojs |
| spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-11522018-05-15T14:22:44Z Metrizable ball structures Protasov, I. V. ball structure, ball isomorphism, metrizablility 54E35, 05C75 A ball structure is a triple \((X,P,B)\), where \(X\), \(P\) are nonempty sets and, for any \(x\in X\), \(\alpha\in P\), \(B(x,\alpha)\) is a subset of \(X\), \(x\in B(x,\alpha)\), which is called a ball of radius \(\alpha\) around \(x\). We characterize up to isomorphism the ball structures related to the metric spaces of different types and groups. Lugansk National Taras Shevchenko University 2018-05-15 Article Article Peer-reviewed Article https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1152 Algebra and Discrete Mathematics; Vol 1, No 1 (2002) 2415-721X 1726-3255 en Copyright (c) 2018 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2018-05-15T14:22:44Z |
| collection |
OJS |
| language |
English |
| topic |
ball structure ball isomorphism metrizablility 54E35 05C75 |
| spellingShingle |
ball structure ball isomorphism metrizablility 54E35 05C75 Protasov, I. V. Metrizable ball structures |
| topic_facet |
ball structure ball isomorphism metrizablility 54E35 05C75 |
| format |
Article |
| author |
Protasov, I. V. |
| author_facet |
Protasov, I. V. |
| author_sort |
Protasov, I. V. |
| title |
Metrizable ball structures |
| title_short |
Metrizable ball structures |
| title_full |
Metrizable ball structures |
| title_fullStr |
Metrizable ball structures |
| title_full_unstemmed |
Metrizable ball structures |
| title_sort |
metrizable ball structures |
| description |
A ball structure is a triple \((X,P,B)\), where \(X\), \(P\) are nonempty sets and, for any \(x\in X\), \(\alpha\in P\), \(B(x,\alpha)\) is a subset of \(X\), \(x\in B(x,\alpha)\), which is called a ball of radius \(\alpha\) around \(x\). We characterize up to isomorphism the ball structures related to the metric spaces of different types and groups. |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2018 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1152 |
| work_keys_str_mv |
AT protasoviv metrizableballstructures |
| first_indexed |
2025-07-17T10:35:04Z |
| last_indexed |
2025-07-17T10:35:04Z |
| _version_ |
1837890015847251968 |