Metrizable ball structures

A ball structure is a triple \((X,P,B)\), where \(X\), \(P\) are nonempty sets and, for any \(x\in X\), \(\alpha\in P\), \(B(x,\alpha)\) is a subset of \(X\), \(x\in B(x,\alpha)\), which is called a ball of radius \(\alpha\) around \(x\). We characterize up to isomorphism the ball structures related...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Protasov, I. V.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1152
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1152
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-11522018-05-15T14:22:44Z Metrizable ball structures Protasov, I. V. ball structure, ball isomorphism, metrizablility 54E35, 05C75 A ball structure is a triple \((X,P,B)\), where \(X\), \(P\) are nonempty sets and, for any \(x\in X\), \(\alpha\in P\), \(B(x,\alpha)\) is a subset of \(X\), \(x\in B(x,\alpha)\), which is called a ball of radius \(\alpha\) around \(x\). We characterize up to isomorphism the ball structures related to the metric spaces of different types and groups. Lugansk National Taras Shevchenko University 2018-05-15 Article Article Peer-reviewed Article https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1152 Algebra and Discrete Mathematics; Vol 1, No 1 (2002) 2415-721X 1726-3255 en Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-05-15T14:22:44Z
collection OJS
language English
topic ball structure
ball isomorphism
metrizablility
54E35
05C75
spellingShingle ball structure
ball isomorphism
metrizablility
54E35
05C75
Protasov, I. V.
Metrizable ball structures
topic_facet ball structure
ball isomorphism
metrizablility
54E35
05C75
format Article
author Protasov, I. V.
author_facet Protasov, I. V.
author_sort Protasov, I. V.
title Metrizable ball structures
title_short Metrizable ball structures
title_full Metrizable ball structures
title_fullStr Metrizable ball structures
title_full_unstemmed Metrizable ball structures
title_sort metrizable ball structures
description A ball structure is a triple \((X,P,B)\), where \(X\), \(P\) are nonempty sets and, for any \(x\in X\), \(\alpha\in P\), \(B(x,\alpha)\) is a subset of \(X\), \(x\in B(x,\alpha)\), which is called a ball of radius \(\alpha\) around \(x\). We characterize up to isomorphism the ball structures related to the metric spaces of different types and groups.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1152
work_keys_str_mv AT protasoviv metrizableballstructures
first_indexed 2025-07-17T10:35:04Z
last_indexed 2025-07-17T10:35:04Z
_version_ 1837890015847251968