A maximal \(T\)-space of \(\mathbb{F}_{3}[x]_0\)

In earlier work, we have established that for any finite field \(k\), the free associative \(k\)-algebra on one generator \(x\), denoted by \(k[x]_0\), has infinitely many maximal \(T\)-spaces, but exactly two maximal \(T\)-ideals (each of which is a maximal \(T\)-space). However, aside from these t...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Bekh-Ochir, Chuluun, Rankin, Stuart A.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1154
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1154
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-11542018-05-16T05:04:06Z A maximal \(T\)-space of \(\mathbb{F}_{3}[x]_0\) Bekh-Ochir, Chuluun Rankin, Stuart A. 16R10 In earlier work, we have established that for any finite field \(k\), the free associative \(k\)-algebra on one generator \(x\), denoted by \(k[x]_0\), has infinitely many maximal \(T\)-spaces, but exactly two maximal \(T\)-ideals (each of which is a maximal \(T\)-space). However, aside from these two \(T\)-ideals, no specific examples of maximal \(T\)-spaces of \(k[x]_0\) were determined at that time. In a subsequent work, we proposed that for a finite field \(k\) of characteristic \(p>2\) and order \(q\), for each positive integer \(n\) which is a power of 2, the \(T\)-space \(W_n\), generated by \(\{x+x^{q^n}, x^{q^n+1}\}\), is maximal, and we proved that \(W_1\) is maximal. In this note, we prove that for \(q=p=3\), \(W_2\) is maximal. Lugansk National Taras Shevchenko University 2018-05-16 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1154 Algebra and Discrete Mathematics; Vol 16, No 2 (2013) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1154/647 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic
16R10
spellingShingle
16R10
Bekh-Ochir, Chuluun
Rankin, Stuart A.
A maximal \(T\)-space of \(\mathbb{F}_{3}[x]_0\)
topic_facet
16R10
format Article
author Bekh-Ochir, Chuluun
Rankin, Stuart A.
author_facet Bekh-Ochir, Chuluun
Rankin, Stuart A.
author_sort Bekh-Ochir, Chuluun
title A maximal \(T\)-space of \(\mathbb{F}_{3}[x]_0\)
title_short A maximal \(T\)-space of \(\mathbb{F}_{3}[x]_0\)
title_full A maximal \(T\)-space of \(\mathbb{F}_{3}[x]_0\)
title_fullStr A maximal \(T\)-space of \(\mathbb{F}_{3}[x]_0\)
title_full_unstemmed A maximal \(T\)-space of \(\mathbb{F}_{3}[x]_0\)
title_sort maximal \(t\)-space of \(\mathbb{f}_{3}[x]_0\)
description In earlier work, we have established that for any finite field \(k\), the free associative \(k\)-algebra on one generator \(x\), denoted by \(k[x]_0\), has infinitely many maximal \(T\)-spaces, but exactly two maximal \(T\)-ideals (each of which is a maximal \(T\)-space). However, aside from these two \(T\)-ideals, no specific examples of maximal \(T\)-spaces of \(k[x]_0\) were determined at that time. In a subsequent work, we proposed that for a finite field \(k\) of characteristic \(p>2\) and order \(q\), for each positive integer \(n\) which is a power of 2, the \(T\)-space \(W_n\), generated by \(\{x+x^{q^n}, x^{q^n+1}\}\), is maximal, and we proved that \(W_1\) is maximal. In this note, we prove that for \(q=p=3\), \(W_2\) is maximal.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1154
work_keys_str_mv AT bekhochirchuluun amaximaltspaceofmathbbf3x0
AT rankinstuarta amaximaltspaceofmathbbf3x0
AT bekhochirchuluun maximaltspaceofmathbbf3x0
AT rankinstuarta maximaltspaceofmathbbf3x0
first_indexed 2024-04-12T06:25:08Z
last_indexed 2024-04-12T06:25:08Z
_version_ 1796109229108494336