On some linear groups, having a big family of \(G\)-invariant subspaces

Let \(F\) be a field, \(A\) a vector space over \(F\), \(GL(F, A)\) be the group of all automorphisms of the vector space \(A\). If \(B\) is a subspace of \(A\), then denote by \(BFG\) the \(G\)-invariant subspace, generated by \(B\). A subspace \(B\) is called nearly \(G\)-invariant, if \(dim_F(BFG...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Kurdachenko, L. A., Sadovnichenko, A. V.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1158
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1158
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-11582018-05-16T05:04:06Z On some linear groups, having a big family of \(G\)-invariant subspaces Kurdachenko, L. A. Sadovnichenko, A. V. Vector space, linear group, module, \(G\)-invariant subspace, nearly \(G\)-invariant subspace 15A03, 20F16, 20F29 Let \(F\) be a field, \(A\) a vector space over \(F\), \(GL(F, A)\) be the group of all automorphisms of the vector space \(A\). If \(B\) is a subspace of \(A\), then denote by \(BFG\) the \(G\)-invariant subspace, generated by \(B\). A subspace \(B\) is called nearly \(G\)-invariant, if \(dim_F(BFG/B)\) is finite. In this paper we described the situation when every subspace of \(A\) is nearly \(G\)-invariant. Lugansk National Taras Shevchenko University 2018-05-16 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1158 Algebra and Discrete Mathematics; Vol 16, No 2 (2013) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1158/650 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic Vector space
linear group
module
\(G\)-invariant subspace
nearly \(G\)-invariant subspace
15A03
20F16
20F29
spellingShingle Vector space
linear group
module
\(G\)-invariant subspace
nearly \(G\)-invariant subspace
15A03
20F16
20F29
Kurdachenko, L. A.
Sadovnichenko, A. V.
On some linear groups, having a big family of \(G\)-invariant subspaces
topic_facet Vector space
linear group
module
\(G\)-invariant subspace
nearly \(G\)-invariant subspace
15A03
20F16
20F29
format Article
author Kurdachenko, L. A.
Sadovnichenko, A. V.
author_facet Kurdachenko, L. A.
Sadovnichenko, A. V.
author_sort Kurdachenko, L. A.
title On some linear groups, having a big family of \(G\)-invariant subspaces
title_short On some linear groups, having a big family of \(G\)-invariant subspaces
title_full On some linear groups, having a big family of \(G\)-invariant subspaces
title_fullStr On some linear groups, having a big family of \(G\)-invariant subspaces
title_full_unstemmed On some linear groups, having a big family of \(G\)-invariant subspaces
title_sort on some linear groups, having a big family of \(g\)-invariant subspaces
description Let \(F\) be a field, \(A\) a vector space over \(F\), \(GL(F, A)\) be the group of all automorphisms of the vector space \(A\). If \(B\) is a subspace of \(A\), then denote by \(BFG\) the \(G\)-invariant subspace, generated by \(B\). A subspace \(B\) is called nearly \(G\)-invariant, if \(dim_F(BFG/B)\) is finite. In this paper we described the situation when every subspace of \(A\) is nearly \(G\)-invariant.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1158
work_keys_str_mv AT kurdachenkola onsomelineargroupshavingabigfamilyofginvariantsubspaces
AT sadovnichenkoav onsomelineargroupshavingabigfamilyofginvariantsubspaces
first_indexed 2024-04-12T06:26:01Z
last_indexed 2024-04-12T06:26:01Z
_version_ 1796109216328450048