Algorithms computing \({\rm O}(n, \mathbb{Z})\)-orbits of \(P\)-critical edge-bipartite graphs and \(P\)-critical unit forms using Maple and C\#
We present combinatorial algorithms constructing loop-free \(P\)-critical edge-bipartite (signed) graphs \(\Delta'\), with \(n\geq 3\) vertices, from pairs \((\Delta , w)\), with \(\Delta \) a positive edge-bipartite graph having \(n\mbox{-}1\) vertices and \(w\) a sincere root of \(\Delta \),...
Збережено в:
| Дата: | 2018 |
|---|---|
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1161 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| id |
oai:ojs.admjournal.luguniv.edu.ua:article-1161 |
|---|---|
| record_format |
ojs |
| spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-11612018-05-16T05:04:06Z Algorithms computing \({\rm O}(n, \mathbb{Z})\)-orbits of \(P\)-critical edge-bipartite graphs and \(P\)-critical unit forms using Maple and C\# Polak, Agnieszka Simson, Daniel edge-bipartite graph, unit quadratic form, \(P\)-critical edge-bipartite graph, Gram matrix, sincere root, orthogonal group, algorithm, Coxeter polynomial, Euclidean diagram 15A63, 11Y16, 68W30, 05E10 16G20, 20B40, 15A21 We present combinatorial algorithms constructing loop-free \(P\)-critical edge-bipartite (signed) graphs \(\Delta'\), with \(n\geq 3\) vertices, from pairs \((\Delta , w)\), with \(\Delta \) a positive edge-bipartite graph having \(n\mbox{-}1\) vertices and \(w\) a sincere root of \(\Delta \), up to an action \(*:\cal U \cal B igr_n \times {\rm O}(n,\mathbb{Z}) \to \cal U \cal B igr_n\) of the orthogonal group \({\rm O}(n,\mathbb{Z})\) on the set \(\cal U \cal B igr_n\) of loop-free edge-bipartite graphs, with \(n\geq 3\) vertices. Here \(\mathbb{Z}\) is the ring of integers. We also present a package of algorithms for a Coxeter spectral analysis of graphs in \(\cal U \cal B igr_n\) and for computing the \({\rm O}(n, \mathbb{Z})\)-orbits of \(P\)-critical graphs \(\Delta\) in \(\cal U \cal B igr_n\) as well as the positive ones. By applying the package, symbolic computations in Maple and numerical computations in C\#, we compute \(P\)-critical graphs in \(\cal U \cal B igr_n\) and connected positive graphs in \(\cal U \cal B igr_n\), together with their Coxeter polynomials, reduced Coxeter numbers, and the \({\rm O}(n, \mathbb{Z})\)-orbits, for \(n\leq 10\). The computational results are presented in tables of Section 5. Lugansk National Taras Shevchenko University 2018-05-16 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1161 Algebra and Discrete Mathematics; Vol 16, No 2 (2013) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1161/653 Copyright (c) 2018 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2018-05-16T05:04:06Z |
| collection |
OJS |
| language |
English |
| topic |
edge-bipartite graph unit quadratic form \(P\)-critical edge-bipartite graph Gram matrix sincere root orthogonal group algorithm Coxeter polynomial Euclidean diagram 15A63 11Y16 68W30 05E10 16G20 20B40 15A21 |
| spellingShingle |
edge-bipartite graph unit quadratic form \(P\)-critical edge-bipartite graph Gram matrix sincere root orthogonal group algorithm Coxeter polynomial Euclidean diagram 15A63 11Y16 68W30 05E10 16G20 20B40 15A21 Polak, Agnieszka Simson, Daniel Algorithms computing \({\rm O}(n, \mathbb{Z})\)-orbits of \(P\)-critical edge-bipartite graphs and \(P\)-critical unit forms using Maple and C\# |
| topic_facet |
edge-bipartite graph unit quadratic form \(P\)-critical edge-bipartite graph Gram matrix sincere root orthogonal group algorithm Coxeter polynomial Euclidean diagram 15A63 11Y16 68W30 05E10 16G20 20B40 15A21 |
| format |
Article |
| author |
Polak, Agnieszka Simson, Daniel |
| author_facet |
Polak, Agnieszka Simson, Daniel |
| author_sort |
Polak, Agnieszka |
| title |
Algorithms computing \({\rm O}(n, \mathbb{Z})\)-orbits of \(P\)-critical edge-bipartite graphs and \(P\)-critical unit forms using Maple and C\# |
| title_short |
Algorithms computing \({\rm O}(n, \mathbb{Z})\)-orbits of \(P\)-critical edge-bipartite graphs and \(P\)-critical unit forms using Maple and C\# |
| title_full |
Algorithms computing \({\rm O}(n, \mathbb{Z})\)-orbits of \(P\)-critical edge-bipartite graphs and \(P\)-critical unit forms using Maple and C\# |
| title_fullStr |
Algorithms computing \({\rm O}(n, \mathbb{Z})\)-orbits of \(P\)-critical edge-bipartite graphs and \(P\)-critical unit forms using Maple and C\# |
| title_full_unstemmed |
Algorithms computing \({\rm O}(n, \mathbb{Z})\)-orbits of \(P\)-critical edge-bipartite graphs and \(P\)-critical unit forms using Maple and C\# |
| title_sort |
algorithms computing \({\rm o}(n, \mathbb{z})\)-orbits of \(p\)-critical edge-bipartite graphs and \(p\)-critical unit forms using maple and c\# |
| description |
We present combinatorial algorithms constructing loop-free \(P\)-critical edge-bipartite (signed) graphs \(\Delta'\), with \(n\geq 3\) vertices, from pairs \((\Delta , w)\), with \(\Delta \) a positive edge-bipartite graph having \(n\mbox{-}1\) vertices and \(w\) a sincere root of \(\Delta \), up to an action \(*:\cal U \cal B igr_n \times {\rm O}(n,\mathbb{Z}) \to \cal U \cal B igr_n\) of the orthogonal group \({\rm O}(n,\mathbb{Z})\) on the set \(\cal U \cal B igr_n\) of loop-free edge-bipartite graphs, with \(n\geq 3\) vertices. Here \(\mathbb{Z}\) is the ring of integers. We also present a package of algorithms for a Coxeter spectral analysis of graphs in \(\cal U \cal B igr_n\) and for computing the \({\rm O}(n, \mathbb{Z})\)-orbits of \(P\)-critical graphs \(\Delta\) in \(\cal U \cal B igr_n\) as well as the positive ones. By applying the package, symbolic computations in Maple and numerical computations in C\#, we compute \(P\)-critical graphs in \(\cal U \cal B igr_n\) and connected positive graphs in \(\cal U \cal B igr_n\), together with their Coxeter polynomials, reduced Coxeter numbers, and the \({\rm O}(n, \mathbb{Z})\)-orbits, for \(n\leq 10\). The computational results are presented in tables of Section 5. |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2018 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1161 |
| work_keys_str_mv |
AT polakagnieszka algorithmscomputingrmonmathbbzorbitsofpcriticaledgebipartitegraphsandpcriticalunitformsusingmapleandc AT simsondaniel algorithmscomputingrmonmathbbzorbitsofpcriticaledgebipartitegraphsandpcriticalunitformsusingmapleandc |
| first_indexed |
2025-07-17T10:35:04Z |
| last_indexed |
2025-07-17T10:35:04Z |
| _version_ |
1837890016396705792 |