Relative symmetric polynomials and money change problem

This article is devoted to the number of non-negative solutions of the linear Diophantine equation\[a_1t_1+a_2t_2+\cdots +a_nt_n=d,\]where \(a_1, \ldots, a_n\), and \(d\) are positive integers. We  obtain a relation between the number of solutions of this equation and characters of the symmetric gro...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Shahryari, M.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1162
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:This article is devoted to the number of non-negative solutions of the linear Diophantine equation\[a_1t_1+a_2t_2+\cdots +a_nt_n=d,\]where \(a_1, \ldots, a_n\), and \(d\) are positive integers. We  obtain a relation between the number of solutions of this equation and characters of the symmetric group, using relative symmetric polynomials. As an application, we  give a necessary and sufficient condition for the space of the relative symmetric polynomials to be non-zero.