Relative symmetric polynomials and money change problem

This article is devoted to the number of non-negative solutions of the linear Diophantine equation\[a_1t_1+a_2t_2+\cdots +a_nt_n=d,\]where \(a_1, \ldots, a_n\), and \(d\) are positive integers. We  obtain a relation between the number of solutions of this equation and characters of the symmetric gro...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Shahryari, M.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1162
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1162
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-11622018-05-16T05:04:06Z Relative symmetric polynomials and money change problem Shahryari, M. Money change problem; Partitions of integers; Relative symmetric polynomials; Symmetric groups; Complex characters Primary 05A17, Secondary 05E05 and 15A69 This article is devoted to the number of non-negative solutions of the linear Diophantine equation\[a_1t_1+a_2t_2+\cdots +a_nt_n=d,\]where \(a_1, \ldots, a_n\), and \(d\) are positive integers. We  obtain a relation between the number of solutions of this equation and characters of the symmetric group, using relative symmetric polynomials. As an application, we  give a necessary and sufficient condition for the space of the relative symmetric polynomials to be non-zero. Lugansk National Taras Shevchenko University 2018-05-16 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1162 Algebra and Discrete Mathematics; Vol 16, No 2 (2013) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1162/654 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-05-16T05:04:06Z
collection OJS
language English
topic Money change problem
Partitions of integers
Relative symmetric polynomials
Symmetric groups
Complex characters
Primary 05A17
Secondary 05E05 and 15A69
spellingShingle Money change problem
Partitions of integers
Relative symmetric polynomials
Symmetric groups
Complex characters
Primary 05A17
Secondary 05E05 and 15A69
Shahryari, M.
Relative symmetric polynomials and money change problem
topic_facet Money change problem
Partitions of integers
Relative symmetric polynomials
Symmetric groups
Complex characters
Primary 05A17
Secondary 05E05 and 15A69
format Article
author Shahryari, M.
author_facet Shahryari, M.
author_sort Shahryari, M.
title Relative symmetric polynomials and money change problem
title_short Relative symmetric polynomials and money change problem
title_full Relative symmetric polynomials and money change problem
title_fullStr Relative symmetric polynomials and money change problem
title_full_unstemmed Relative symmetric polynomials and money change problem
title_sort relative symmetric polynomials and money change problem
description This article is devoted to the number of non-negative solutions of the linear Diophantine equation\[a_1t_1+a_2t_2+\cdots +a_nt_n=d,\]where \(a_1, \ldots, a_n\), and \(d\) are positive integers. We  obtain a relation between the number of solutions of this equation and characters of the symmetric group, using relative symmetric polynomials. As an application, we  give a necessary and sufficient condition for the space of the relative symmetric polynomials to be non-zero.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1162
work_keys_str_mv AT shahryarim relativesymmetricpolynomialsandmoneychangeproblem
first_indexed 2025-07-17T10:30:54Z
last_indexed 2025-07-17T10:30:54Z
_version_ 1837890131160203264