On subgroups of finite exponent in groups

We investigate properties of groups with subgroups of  finite exponent and prove that  a non-perfect group  \(G\)  of infinite exponent with all proper subgroups of finite exponent has the following properties:\((1)\) \(G\) is an indecomposable  \(p\)-group,\((2)\) if the derived subgroup \(G'\...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Artemovych, Orest D.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1170
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:We investigate properties of groups with subgroups of  finite exponent and prove that  a non-perfect group  \(G\)  of infinite exponent with all proper subgroups of finite exponent has the following properties:\((1)\) \(G\) is an indecomposable  \(p\)-group,\((2)\) if the derived subgroup \(G'\) is non-perfect, then \(G/G''\) is a group of Heineken-Mohamed type.We also prove that  a non-perfect indecomposable group  \(G\) with the non-perfect locally nilpotent derived subgroup \(G'\)  is a locally finite \(p\)-group.