2025-02-22T21:21:27-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22oai%3Aojs.admjournal.luguniv.edu.ua%3Aarticle-1203%22&qt=morelikethis&rows=5
2025-02-22T21:21:27-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22oai%3Aojs.admjournal.luguniv.edu.ua%3Aarticle-1203%22&qt=morelikethis&rows=5
2025-02-22T21:21:27-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T21:21:27-05:00 DEBUG: Deserialized SOLR response

Comaximal factorization in a commutative Bezout ring

We study an analogue of unique factorization rings in the case of an elementary divisor domain.

Saved in:
Bibliographic Details
Main Authors: Zabavsky, B. V., Romaniv, O., Kuznitska, B., Hlova, T.
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2020
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1203
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:ojs.admjournal.luguniv.edu.ua:article-1203
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-12032021-01-03T08:31:40Z Comaximal factorization in a commutative Bezout ring Zabavsky, B. V. Romaniv, O. Kuznitska, B. Hlova, T. Bezout ring, clean ring, neat ring, elementary divisor ring, stable range one, stable range two, neat range one, pseudo-irreducible elemen 13F15, 19B10 We study an analogue of unique factorization rings in the case of an elementary divisor domain. Lugansk National Taras Shevchenko University 2020-12-30 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1203 10.12958/adm1203 Algebra and Discrete Mathematics; Vol 30, No 1 (2020) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1203/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1203/377 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1203/378 Copyright (c) 2020 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic Bezout ring
clean ring
neat ring
elementary divisor ring
stable range one
stable range two
neat range one
pseudo-irreducible elemen
13F15
19B10
spellingShingle Bezout ring
clean ring
neat ring
elementary divisor ring
stable range one
stable range two
neat range one
pseudo-irreducible elemen
13F15
19B10
Zabavsky, B. V.
Romaniv, O.
Kuznitska, B.
Hlova, T.
Comaximal factorization in a commutative Bezout ring
topic_facet Bezout ring
clean ring
neat ring
elementary divisor ring
stable range one
stable range two
neat range one
pseudo-irreducible elemen
13F15
19B10
format Article
author Zabavsky, B. V.
Romaniv, O.
Kuznitska, B.
Hlova, T.
author_facet Zabavsky, B. V.
Romaniv, O.
Kuznitska, B.
Hlova, T.
author_sort Zabavsky, B. V.
title Comaximal factorization in a commutative Bezout ring
title_short Comaximal factorization in a commutative Bezout ring
title_full Comaximal factorization in a commutative Bezout ring
title_fullStr Comaximal factorization in a commutative Bezout ring
title_full_unstemmed Comaximal factorization in a commutative Bezout ring
title_sort comaximal factorization in a commutative bezout ring
description We study an analogue of unique factorization rings in the case of an elementary divisor domain.
publisher Lugansk National Taras Shevchenko University
publishDate 2020
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1203
work_keys_str_mv AT zabavskybv comaximalfactorizationinacommutativebezoutring
AT romanivo comaximalfactorizationinacommutativebezoutring
AT kuznitskab comaximalfactorizationinacommutativebezoutring
AT hlovat comaximalfactorizationinacommutativebezoutring
first_indexed 2024-04-12T06:27:36Z
last_indexed 2024-04-12T06:27:36Z
_version_ 1796109245728423936