The containment poset of type \(A\) Hessenberg varieties

Flag varieties are well-known algebraic varieties with many important geometric, combinatorial, and representation theoretic properties. A Hessenberg variety is a subvariety of a flag variety identified by two parameters: an element \(X\) of the Lie algebra \(\mathfrak{g}\) and a Hessenberg subspace...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2020
Автор: Drellich, E.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2020
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1216
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1216
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-12162020-07-08T07:13:20Z The containment poset of type \(A\) Hessenberg varieties Drellich, E. Hessenberg variety, root space, poset 14A25, 17B45, 05E99 Flag varieties are well-known algebraic varieties with many important geometric, combinatorial, and representation theoretic properties. A Hessenberg variety is a subvariety of a flag variety identified by two parameters: an element \(X\) of the Lie algebra \(\mathfrak{g}\) and a Hessenberg subspace \(H\subseteq \mathfrak{g}\).  This paper considers when two Hessenberg spaces define the same Hessenberg variety when paired with \(X\).  To answer this question we present the containment poset \(\mathcal{P}_X\) of type \(A\) Hessenberg varieties with a fixed first parameter \(X\) and give a simple and elegant proof that if \(X\) is not a multiple of the element \(\bf 1\) then the Hessenberg spaces containing the Borel subalgebra determine distinct Hessenberg varieties. Lastly we give a natural involution on \(\mathcal{P}_X\)  that induces a homeomorphism of varieties and prove additional properties of \(\mathcal{P}_X\) when \(X\) is a regular nilpotent element. Lugansk National Taras Shevchenko University 2020-07-08 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1216 10.12958/adm1216 Algebra and Discrete Mathematics; Vol 29, No 2 (2020) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1216/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1216/425 Copyright (c) 2020 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2020-07-08T07:13:20Z
collection OJS
language English
topic Hessenberg variety
root space
poset
14A25
17B45
05E99
spellingShingle Hessenberg variety
root space
poset
14A25
17B45
05E99
Drellich, E.
The containment poset of type \(A\) Hessenberg varieties
topic_facet Hessenberg variety
root space
poset
14A25
17B45
05E99
format Article
author Drellich, E.
author_facet Drellich, E.
author_sort Drellich, E.
title The containment poset of type \(A\) Hessenberg varieties
title_short The containment poset of type \(A\) Hessenberg varieties
title_full The containment poset of type \(A\) Hessenberg varieties
title_fullStr The containment poset of type \(A\) Hessenberg varieties
title_full_unstemmed The containment poset of type \(A\) Hessenberg varieties
title_sort containment poset of type \(a\) hessenberg varieties
description Flag varieties are well-known algebraic varieties with many important geometric, combinatorial, and representation theoretic properties. A Hessenberg variety is a subvariety of a flag variety identified by two parameters: an element \(X\) of the Lie algebra \(\mathfrak{g}\) and a Hessenberg subspace \(H\subseteq \mathfrak{g}\).  This paper considers when two Hessenberg spaces define the same Hessenberg variety when paired with \(X\).  To answer this question we present the containment poset \(\mathcal{P}_X\) of type \(A\) Hessenberg varieties with a fixed first parameter \(X\) and give a simple and elegant proof that if \(X\) is not a multiple of the element \(\bf 1\) then the Hessenberg spaces containing the Borel subalgebra determine distinct Hessenberg varieties. Lastly we give a natural involution on \(\mathcal{P}_X\)  that induces a homeomorphism of varieties and prove additional properties of \(\mathcal{P}_X\) when \(X\) is a regular nilpotent element.
publisher Lugansk National Taras Shevchenko University
publishDate 2020
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1216
work_keys_str_mv AT drelliche thecontainmentposetoftypeahessenbergvarieties
AT drelliche containmentposetoftypeahessenbergvarieties
first_indexed 2025-07-17T10:33:21Z
last_indexed 2025-07-17T10:33:21Z
_version_ 1837889908576878593