Automorphism groups of superextensions of finite monogenic semigroups

A family \(\mathcal L\) of subsets  of a set \(X\) is called linked if \(A\cap B\ne\emptyset\) for any \(A,B\in\mathcal L\).  A linked family \(\mathcal M\) of subsets of \(X\) is maximal linked if \(\mathcal M\) coincides with each linked family \(\mathcal L\) on \(X\) that contains \(\mathcal M\)....

Full description

Saved in:
Bibliographic Details
Date:2019
Main Authors: Banakh, Taras O., Gavrylkiv, Volodymyr M.
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2019
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1225
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1225
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-12252019-07-14T19:54:06Z Automorphism groups of superextensions of finite monogenic semigroups Banakh, Taras O. Gavrylkiv, Volodymyr M. monogenic semigroup, maximal linked upfamily, superextension, automorphism group 20D45, 20M15, 20B25 A family \(\mathcal L\) of subsets  of a set \(X\) is called linked if \(A\cap B\ne\emptyset\) for any \(A,B\in\mathcal L\).  A linked family \(\mathcal M\) of subsets of \(X\) is maximal linked if \(\mathcal M\) coincides with each linked family \(\mathcal L\) on \(X\) that contains \(\mathcal M\). The superextension \(\lambda(X)\) of \(X\) consists of all maximal linked families on \(X\). Any associative binary operation \(* : X\times X \to X\) can be extended to an associative binary operation \(*: \lambda(X)\times\lambda(X)\to\lambda(X)\). In the paper we study automorphisms of the superextensions of  finite monogenic semigroups and characteristic ideals in such semigroups. In particular, we describe the automorphism groups of the superextensions of finite monogenic semigroups of cardinality \(\leq 5\). Lugansk National Taras Shevchenko University 2019-07-14 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1225 Algebra and Discrete Mathematics; Vol 27, No 2 (2019) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1225/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1225/397 Copyright (c) 2019 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2019-07-14T19:54:06Z
collection OJS
language English
topic monogenic semigroup
maximal linked upfamily
superextension
automorphism group
20D45
20M15
20B25
spellingShingle monogenic semigroup
maximal linked upfamily
superextension
automorphism group
20D45
20M15
20B25
Banakh, Taras O.
Gavrylkiv, Volodymyr M.
Automorphism groups of superextensions of finite monogenic semigroups
topic_facet monogenic semigroup
maximal linked upfamily
superextension
automorphism group
20D45
20M15
20B25
format Article
author Banakh, Taras O.
Gavrylkiv, Volodymyr M.
author_facet Banakh, Taras O.
Gavrylkiv, Volodymyr M.
author_sort Banakh, Taras O.
title Automorphism groups of superextensions of finite monogenic semigroups
title_short Automorphism groups of superextensions of finite monogenic semigroups
title_full Automorphism groups of superextensions of finite monogenic semigroups
title_fullStr Automorphism groups of superextensions of finite monogenic semigroups
title_full_unstemmed Automorphism groups of superextensions of finite monogenic semigroups
title_sort automorphism groups of superextensions of finite monogenic semigroups
description A family \(\mathcal L\) of subsets  of a set \(X\) is called linked if \(A\cap B\ne\emptyset\) for any \(A,B\in\mathcal L\).  A linked family \(\mathcal M\) of subsets of \(X\) is maximal linked if \(\mathcal M\) coincides with each linked family \(\mathcal L\) on \(X\) that contains \(\mathcal M\). The superextension \(\lambda(X)\) of \(X\) consists of all maximal linked families on \(X\). Any associative binary operation \(* : X\times X \to X\) can be extended to an associative binary operation \(*: \lambda(X)\times\lambda(X)\to\lambda(X)\). In the paper we study automorphisms of the superextensions of  finite monogenic semigroups and characteristic ideals in such semigroups. In particular, we describe the automorphism groups of the superextensions of finite monogenic semigroups of cardinality \(\leq 5\).
publisher Lugansk National Taras Shevchenko University
publishDate 2019
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1225
work_keys_str_mv AT banakhtaraso automorphismgroupsofsuperextensionsoffinitemonogenicsemigroups
AT gavrylkivvolodymyrm automorphismgroupsofsuperextensionsoffinitemonogenicsemigroups
first_indexed 2025-07-17T10:36:08Z
last_indexed 2025-07-17T10:36:08Z
_version_ 1837890082913124352