Groups whose lattices of normal subgroups are factorial

We prove that the groups \(G\) for which the lattice of normal subgroups \(\mathcal{N}(G)\) is factorial are exactly the UND-groups, that is the groups for which every normal subgroup have a unique normal complement, with finite length.

Збережено в:
Бібліографічні деталі
Дата:2021
Автор: Rajhi, A.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2021
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1264
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1264
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-12642021-01-29T09:38:49Z Groups whose lattices of normal subgroups are factorial Rajhi, A. lattice of normal subgroups, semilattices, idempotent monoids, partial monoids 20E99, 06B99 We prove that the groups \(G\) for which the lattice of normal subgroups \(\mathcal{N}(G)\) is factorial are exactly the UND-groups, that is the groups for which every normal subgroup have a unique normal complement, with finite length. Lugansk National Taras Shevchenko University 2021-01-29 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1264 10.12958/adm1264 Algebra and Discrete Mathematics; Vol 30, No 2 (2020) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1264/pdf Copyright (c) 2021 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic lattice of normal subgroups
semilattices
idempotent monoids
partial monoids
20E99
06B99
spellingShingle lattice of normal subgroups
semilattices
idempotent monoids
partial monoids
20E99
06B99
Rajhi, A.
Groups whose lattices of normal subgroups are factorial
topic_facet lattice of normal subgroups
semilattices
idempotent monoids
partial monoids
20E99
06B99
format Article
author Rajhi, A.
author_facet Rajhi, A.
author_sort Rajhi, A.
title Groups whose lattices of normal subgroups are factorial
title_short Groups whose lattices of normal subgroups are factorial
title_full Groups whose lattices of normal subgroups are factorial
title_fullStr Groups whose lattices of normal subgroups are factorial
title_full_unstemmed Groups whose lattices of normal subgroups are factorial
title_sort groups whose lattices of normal subgroups are factorial
description We prove that the groups \(G\) for which the lattice of normal subgroups \(\mathcal{N}(G)\) is factorial are exactly the UND-groups, that is the groups for which every normal subgroup have a unique normal complement, with finite length.
publisher Lugansk National Taras Shevchenko University
publishDate 2021
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1264
work_keys_str_mv AT rajhia groupswhoselatticesofnormalsubgroupsarefactorial
first_indexed 2024-04-12T06:26:02Z
last_indexed 2024-04-12T06:26:02Z
_version_ 1796109146696712192