Groups whose lattices of normal subgroups are factorial
We prove that the groups \(G\) for which the lattice of normal subgroups \(\mathcal{N}(G)\) is factorial are exactly the UND-groups, that is the groups for which every normal subgroup have a unique normal complement, with finite length.
Збережено в:
Дата: | 2021 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2021
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1264 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematicsid |
oai:ojs.admjournal.luguniv.edu.ua:article-1264 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-12642021-01-29T09:38:49Z Groups whose lattices of normal subgroups are factorial Rajhi, A. lattice of normal subgroups, semilattices, idempotent monoids, partial monoids 20E99, 06B99 We prove that the groups \(G\) for which the lattice of normal subgroups \(\mathcal{N}(G)\) is factorial are exactly the UND-groups, that is the groups for which every normal subgroup have a unique normal complement, with finite length. Lugansk National Taras Shevchenko University 2021-01-29 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1264 10.12958/adm1264 Algebra and Discrete Mathematics; Vol 30, No 2 (2020) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1264/pdf Copyright (c) 2021 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
collection |
OJS |
language |
English |
topic |
lattice of normal subgroups semilattices idempotent monoids partial monoids 20E99 06B99 |
spellingShingle |
lattice of normal subgroups semilattices idempotent monoids partial monoids 20E99 06B99 Rajhi, A. Groups whose lattices of normal subgroups are factorial |
topic_facet |
lattice of normal subgroups semilattices idempotent monoids partial monoids 20E99 06B99 |
format |
Article |
author |
Rajhi, A. |
author_facet |
Rajhi, A. |
author_sort |
Rajhi, A. |
title |
Groups whose lattices of normal subgroups are factorial |
title_short |
Groups whose lattices of normal subgroups are factorial |
title_full |
Groups whose lattices of normal subgroups are factorial |
title_fullStr |
Groups whose lattices of normal subgroups are factorial |
title_full_unstemmed |
Groups whose lattices of normal subgroups are factorial |
title_sort |
groups whose lattices of normal subgroups are factorial |
description |
We prove that the groups \(G\) for which the lattice of normal subgroups \(\mathcal{N}(G)\) is factorial are exactly the UND-groups, that is the groups for which every normal subgroup have a unique normal complement, with finite length. |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2021 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1264 |
work_keys_str_mv |
AT rajhia groupswhoselatticesofnormalsubgroupsarefactorial |
first_indexed |
2024-04-12T06:26:02Z |
last_indexed |
2024-04-12T06:26:02Z |
_version_ |
1796109146696712192 |