Groups whose lattices of normal subgroups are factorial
We prove that the groups \(G\) for which the lattice of normal subgroups \(\mathcal{N}(G)\) is factorial are exactly the UND-groups, that is the groups for which every normal subgroup have a unique normal complement, with finite length.
Gespeichert in:
Datum: | 2021 |
---|---|
1. Verfasser: | Rajhi, A. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Lugansk National Taras Shevchenko University
2021
|
Schlagworte: | |
Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1264 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete MathematicsÄhnliche Einträge
-
Lattice groups
von: Kurdachenko, Leonid A., et al.
Veröffentlicht: (2015) -
Groups which are isomorphic to their subgroups with non-modular subgroup lattice
von: De Falco, Maria, et al.
Veröffentlicht: (2018) -
On locally finite groups whose cyclic subgroups are \(\mathrm{GNA}\)-subgroups
von: Pypka, Aleksandr A.
Veröffentlicht: (2018) -
Ideals in \((\mathcal{Z}^{+},\leq_{D})\)
von: Sagi, Sankar
Veröffentlicht: (2018) -
The groups whose cyclic subgroups are either ascendant or almost self-normalizing
von: Kurdachenko, Leonid A., et al.
Veröffentlicht: (2016)