Planarity of a spanning subgraph of the intersection graph of ideals of a commutative ring I, nonquasilocal case

The rings considered in this article are nonzero  commutative with identity which are not fields.  Let \(R\) be a ring.  We denote the collection of all proper ideals of \(R\) by \(\mathbb{I}(R)\) and  the collection \(\mathbb{I}(R)\setminus \{(0)\}\) by \(\mathbb{I}(R)^{*}\). Recall that the inters...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Vadhel, P., Visweswaran, S.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1268
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1268
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-12682018-10-20T08:02:25Z Planarity of a spanning subgraph of the intersection graph of ideals of a commutative ring I, nonquasilocal case Vadhel, P. Visweswaran, S. quasilocal ring, special principal ideal ring, clique number of a graph, planar graph 13A15, 05C25 The rings considered in this article are nonzero  commutative with identity which are not fields.  Let \(R\) be a ring.  We denote the collection of all proper ideals of \(R\) by \(\mathbb{I}(R)\) and  the collection \(\mathbb{I}(R)\setminus \{(0)\}\) by \(\mathbb{I}(R)^{*}\). Recall that the intersection graph of ideals of \(R\), denoted by \(G(R)\), is an undirected graph whose vertex set is \(\mathbb{I}(R)^{*}\) and distinct vertices \(I, J\) are adjacent if and only if \(I\cap J\neq (0)\). In this article, we consider a subgraph  of \(G(R)\), denoted by \(H(R)\), whose vertex set is \(\mathbb{I}(R)^{*}\) and distinct vertices \(I, J\) are adjacent in \(H(R)\) if and only if \(IJ\neq (0)\).  The purpose of this article is to characterize rings \(R\) with  at least two maximal ideals such that \(H(R)\) is planar. Lugansk National Taras Shevchenko University 2018-10-20 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1268 Algebra and Discrete Mathematics; Vol 26, No 1 (2018) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1268/700 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-10-20T08:02:25Z
collection OJS
language English
topic quasilocal ring
special principal ideal ring
clique number of a graph
planar graph
13A15
05C25
spellingShingle quasilocal ring
special principal ideal ring
clique number of a graph
planar graph
13A15
05C25
Vadhel, P.
Visweswaran, S.
Planarity of a spanning subgraph of the intersection graph of ideals of a commutative ring I, nonquasilocal case
topic_facet quasilocal ring
special principal ideal ring
clique number of a graph
planar graph
13A15
05C25
format Article
author Vadhel, P.
Visweswaran, S.
author_facet Vadhel, P.
Visweswaran, S.
author_sort Vadhel, P.
title Planarity of a spanning subgraph of the intersection graph of ideals of a commutative ring I, nonquasilocal case
title_short Planarity of a spanning subgraph of the intersection graph of ideals of a commutative ring I, nonquasilocal case
title_full Planarity of a spanning subgraph of the intersection graph of ideals of a commutative ring I, nonquasilocal case
title_fullStr Planarity of a spanning subgraph of the intersection graph of ideals of a commutative ring I, nonquasilocal case
title_full_unstemmed Planarity of a spanning subgraph of the intersection graph of ideals of a commutative ring I, nonquasilocal case
title_sort planarity of a spanning subgraph of the intersection graph of ideals of a commutative ring i, nonquasilocal case
description The rings considered in this article are nonzero  commutative with identity which are not fields.  Let \(R\) be a ring.  We denote the collection of all proper ideals of \(R\) by \(\mathbb{I}(R)\) and  the collection \(\mathbb{I}(R)\setminus \{(0)\}\) by \(\mathbb{I}(R)^{*}\). Recall that the intersection graph of ideals of \(R\), denoted by \(G(R)\), is an undirected graph whose vertex set is \(\mathbb{I}(R)^{*}\) and distinct vertices \(I, J\) are adjacent if and only if \(I\cap J\neq (0)\). In this article, we consider a subgraph  of \(G(R)\), denoted by \(H(R)\), whose vertex set is \(\mathbb{I}(R)^{*}\) and distinct vertices \(I, J\) are adjacent in \(H(R)\) if and only if \(IJ\neq (0)\).  The purpose of this article is to characterize rings \(R\) with  at least two maximal ideals such that \(H(R)\) is planar.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1268
work_keys_str_mv AT vadhelp planarityofaspanningsubgraphoftheintersectiongraphofidealsofacommutativeringinonquasilocalcase
AT visweswarans planarityofaspanningsubgraphoftheintersectiongraphofidealsofacommutativeringinonquasilocalcase
first_indexed 2025-07-17T10:36:09Z
last_indexed 2025-07-17T10:36:09Z
_version_ 1837890084530028544