Generators and ranks in finite partial transformation semigroups

We extend the concept of path-cycle, to the semigroup \(\mathcal{P}_{n}\), of all partial maps on \(X_{n}=\{1,2,\ldots,n\}\), and show that the classical decomposition of permutations into disjoint cycles can be extended to elements of \(\mathcal{P}_{n}\) by means of path-cycles. The device is used...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Garba, Goje Uba, Imam, Abdussamad Tanko
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2017
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/128
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:We extend the concept of path-cycle, to the semigroup \(\mathcal{P}_{n}\), of all partial maps on \(X_{n}=\{1,2,\ldots,n\}\), and show that the classical decomposition of permutations into disjoint cycles can be extended to elements of \(\mathcal{P}_{n}\) by means of path-cycles. The device is used to obtain information about generating sets for the semigroup \(\mathcal{P}_{n}\setminus\mathcal{S}_{n}\), of all singular partial maps of \(X_{n}\). Moreover, we give a definition for the (\(m,r\))-rank of \(\mathcal{P}_{n}\setminus\mathcal{S}_{n}\) and show that it is \(\frac{n(n+1)}{2}\).